A note to the reader

During the preparation of this paper, I could not quite get rid of a nagging suspicion
that such a very simple idea as underlies the accompanying proof of the Cauchy
theorem must surely already exist in the literature? However, all my searching did
not produce any results, so I went ahead and published.

As it turns out, my first intuition was entirely correct, as the argument has in-
deed been published before [*].

An intriguing question that arises from this is: Why was Vyborny’s proof seem-
ingly universally ignored? One would have thought that the proof might find its way
into some textbooks over the course of nearly 30 years, but apparently it has not. If
the present paper helps to reverse that sorry state of affairs, I will consider it a suc-
cess. (I admit that, though I can no longer claim an original proof, I am somewhat
pleased with the exposition, as well as the historical notes.)

Please make sure that this note accompanies any copies of this paper, so that
Vyborny’s contribution will be properly acknowledged if (when?) it ever gets into
the textbook literature.

Trondheim, 17 October 2008
Harald Hanche-Olsen

Reference

[*] Rudolf Vyborny, On the use of differentiable homotopy in the proof of Cauchy’s
theorem, Amer. Math. Monthly 86 (1979) 380-382.
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On Goursat’s Proof of
Cauchy’s Integral Theorem

Harald Hanche-Olsen

1. INTRODUCTION. One standard proof for the Cauchy integral theorem goes
something like this: First one proves it for triangular paths, and uses this to establish
the existence of an antiderivative on star shaped regions. The Cauchy integral theorem
follows on such regions. Next, the homotopy version of the theorem is derived from
this, typically with some difficulty of a didactic nature.

The purpose of this note is to point out that the homotopy version is easily derived
directly, by the simple expedient of employing Goursat’s trick in the domain of the
homotopy.

2. THE MAIN RESULT. For present purposes, a complex function f is called an-
alytic in a region 2 if its derivative f’ exists at every point in 2. Thus by definition,
whenever zo € 2 then

(@) = f(z0) + f'(z0) - (z — z0) + 0(lz — o)), = Zo- (D
Note that we do not require f’ to be continuous, or even locally bounded. That can be
inferred later, as a consequence of Cauchy’s integral formula, which in turn is derived
from Cauchy’s integral theorem. This derivation is quite standard, so I skip it here.
I skip the proof of the following special case of the integral theorem. It is easily
derived directly from the definition of the integral.

Lemma 1. Ifa and b are complex constants and y is a closed, rectifiable path, then

/(a—i—bz)dz:O.
Y
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Figure 1. Left, the squares Qg D Q1 D Q2 D 03 D Q4 shown in successively darker colors. Right, the
image of these squares under the homotopy o.

By a homotopy in 2 we shall mean a continuous mapping o : [0, 1] x [0, 1] —
Q. For technical reasons, we consider Lipschitz continuous homotopies. That is, we
assume that there is a constant L so that

lo(s,1) — o (s*, 1) < L/(s — s*)2 + (t — 1%)? fors, s*, ¢, t* € [0, 1].

The restriction to Lipschitz continuous homotopies is not a serious one.

A parametrized path « in [0, 1] x [0, 1] is mapped in a natural way to a path in 2, by
composing it with 0. We shall therefore write o o « for this path. Of particular interest
to us will be the boundary of [0, 1] x [0, 1]. We parametrize it by arclength, starting
at (0, 0) and proceeding around the boundary in the counterclockwise direction. We
shall write o for this path.

Theorem 2. Let f be analytic in a region Q in the complex plane. If o : [0, 1] x
[0, 1] — 2 is a Lipschitz continuous homotopy, then

f(z)dz =0.

ooa)

Proof. Assuming this is not the case, we can rescale f and assume

f@)dz=1.

ooa

Now divide Qy = [0, 1] x [0, 1] into four squares of side % The boundary curve of
each smaller square, parametrized in direct analogy with ¢, gives rise to an integral,
and the sum of these four integrals is the integral around o o «y, i.e., 1. Thus one of
these smaller squares, which we shall call O, and whose boundary curve we shall call
o, satisfies

1
1

f(z)dz| >

ooy

Next we divide Q into four smaller squares, one of whose boundary curves will pro-
duce an integral of absolute value at least 1/16, and so forth.
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In general, we get squares Qp D Q1 D Q, D ---, where Q, has sides of length
27", and its boundary curve «,, satisfies

f@dz =272, @

ooy

Now there is a point (sg, o) € [0, 1] x [0, 1] common to all the squares Q,. Write
20 = 0 (50, tp). Then |z — zo| < 2!™"L for any z on the path o o a,, where L is the
Lipschitz constant of o.

We now employ (1) and Lemma 1, concluding that only the final term in (1) will
contribute to the integral of f around a closed contour, so that

f()dz =027, n — 0o,

ooy

with a factor O(27") coming from the length of o o a, (which is at most 227" L) and
the other factor 0(27") coming from the final term of (1). But this contradicts (2), and
the proof is complete. ]

The usual homotopy forms of the Cauchy integral theorem follow immediately from
the theorem above. If y, and y; are two paths in 2 with 15(0) = y,(0) = a and (1) =
y1(1) = B, and these paths are homotopic with fixed end points, this means we can find
a homotopy o with y;(t) = o (j,t) for j =0, 1, while 6(5,0) =@ and o (s, 1) = B
for all s. But then o o oy is composed of y; followed by the reverse of y,, with a
constant path inserted in front of each. So the conclusion of the theorem is just the
identity fyl f()dz — jyo f()dz =0.

Similarly, if the two paths are closed and homotopic via closed paths, i.e., o (s, 0) =
o (s, 1) for all s, we find that o o «( is composed of four paths: s — o (s, 0) followed
by y: and then the reverse of the two paths s — o (s, 1) and y,. But since the first and
third of these are each other’s reverses, the corresponding integrals will cancel, and
again we are left with fm f()dz — fm f(z)dz = 0.

3. NON-LIPSCHITZ HOMOTOPIES. It remains to employ a simple approxima-
tion argument to show that our restriction to Lipschitz continuous homotopies is harm-
less.

First, consider the approximation of paths. If y : [0, 1] — €2 is arectifiable path and
0=ty <t <th <---<t, =11isapartition of [0, 1], we can create a new path y by
requiring that y(#,) = y () fork =0, 1, ... , n and interpolating linearly in between.
Proving that

ff(z)dz—> /f(z)dz
2 y

as the partition is refined is quite straightforward, using the uniform continuity of f in
a compact neighbourhood of y and the finite length of y.

Consider next an arbitrary homotopy « : [0, 1] x [0, 1] — €2. Given any partition
O=t<ti<thb<---<t,=10f[0,1], create a Lipschitz continuous homotopy o
by requiring that o (¢;, &) = k(;, #) for j, k € {O, 1,..., n} and interpolating bilin-
early in each subrectangle:
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a(utj + (I —wtj_y, vt + (1 — v)tk_l)
=0 =w)d —v)k@j-1, tr—1) +u(l — V) (), t-1)
+ (1 — M)UK(tj_l, tk) + uvl((tj, tk)-

foru,v e[0,1]and j, k € {1, cees n} If the partition is fine enough, o will approxi-
mate « uniformly and hence map [0, 1] x [0, 1] into €2, so we can apply the theorem to
o . Also, the path o o o is a piecewise linear approximation to x o 0, so we conclude
that [ oy f(2)dz = 0. Of course, this approximation procedure requires that x o «
be rectifiable, but no such assumption beside continuity is needed concerning « in the
interior of [0, 1] x [0, 1].

The case of a homotopy between closed paths is slightly different: then we wish
to avoid any assumption on the rectifiability of the path s +— « (s, 0) = k (s, 1). Butin
this case, the approximation o will also satisfy o (s, 0) = o (s, 1), so the corresponding
integrals will cancel each other. Thus we only need to consider the other two sides of
the square, and the desired result follows.

4. HISTORICAL REMARKS. Cauchy first communicated the integral theorem to
the Paris Academy on 22 August 1814, as part of a memoir concerned with other
matters [2]; albeit without the explicit presence of a complex variable. The first general
form of the theorem was communicated to the Academy in 1825, and was printed as
a brochure [4]. An extract of this brochure appeared in [3]. More details of the story
can be found in Kline’s book [8, pp. 634—638]—but note that this was written before
the final volume of Cauhy’s (Evres completes was published, so Kline may well have
been unaware of [4].

Goursat presented a proof [6] in 1884 for the case of a simple closed curve, by
dividing up the interior into small squares, showing that the integral around each square
of side [ is bounded by ¢/?, and then adding the results. To obtain this estimate for
arbitrary ¢ > 0 he needs the uniform continuity of f’. In his 1900 paper [7], Goursat
finally dispensed with the a priori assumption of continuity of f’. The argument is as
before, but he now subdivides each square until the necessary estimate holds for each
of them; i.e.,

| f(2) — f(z0) — f(z0) - (z — 20)| < €lz — 2o 3)

for every z on the boundary of the subsquare, where z, is some fixed point in the
subsquare. The important point here is that the same ¢ will do for each subsquare.

He proves that he only needs a finite number of subdivisions by noticing that oth-
erwise, one gets an infinite descent of squares violating (3), and an application of (1)
at the limit point results in a contradiction. But after noting this, he adds the integral
estimates for individual squares as before.

Moore [9] cleaned up the proof a bit, paying more careful attention to the treatment
of the boundary curve. He also introduced the current idea of proof by contradiction,
by subdividing and always selecting a part where the desired conclusion is maximally
violated, and then applying the definition of the derivative at the resulting limit point.
(As Moore states in a footnote, the proof “may easily be cast in the direct form”, which
observation he credits to Maschke.)

Pringsheim presented a more severe criticism [10] of Goursat’s treatment of the
boundary curve in 1901. He pointed out that these problems disappear if the proof
technique is applied to a simple geometric figure such as a triangle. Then the theorem
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follows for simple polygonal paths in a simply connected domain by triangulating the
interior of the path, and finally one gets it for a general path by approximating it by
polygonal paths.

5. CONCLUDING REMARKS. I cannot end this account without directing the
reader’s attention to Dixon’s remarkably short and elegant proof of the global ver-
sion of the Cauchy theorem [5]. It only requires the basics of complex function theory
in convex sets. (A variant of this proof, due to Beardon [1], requires even less of ana-
Iytic function theory, albeit at a slight cost in complexity.) To a large degree this proof
obviates the need for a homotopy version of Cauchy’s theorem. Indeed, Dixon states:

It is reasonable to argue that the concept of homotopy in connection with Cauchy’s theorem is
as extraneous as the notion of Jordan curve.

Be that as it may, not many textbooks of complex analysis seem to have taken his
advice to heart, and most still follow the homotopy route. Personally, I think Dixon
has a point, but it somehow feels artificial to first develop complex function theory
in star shaped or convex regions only, in order to bring in heavy artillery later and
demolish the perceived need for this simplifying assumption. The present proof may
be short and direct enough to replace that first phase of theory building. The powerful
magic of Dixon’s proof can (and should) still be brought to bear later.

ACKNOWLEDGEMENTS. I would like to thank Peter Lindqvist for enlightening discussions on the histor-
ical origin of Cauchy’s integral theorem. Also, my thanks to a referee for directing my attention to Beardon’s
book [1].
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