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The Poincaré–Bendixson theorem is often misstated in the literature. The pur-
pose of this note is to try to set the record straight, and to provide the outline
of a proof.

Throughout this note we are considering an autonomous dynamical sys-
tem on the form

ẋ = f (x), x(t ) ∈Ω⊆Rn

where f : Ω→Rn is a locally Lipschitz continuous vector field on the open set
Ω.

Furthermore, we are considering a solution x whose forward half orbit
O+ = {

x(t ) : t ≥ 0
}

is contained in a compact set K ⊂Ω.
An omega point of O+ is a point z so that one can find tn → +∞ with

x(tn) → z. It is a consequence of the compactness of K that omega points
exist. Write ω for the set of all omega points of O+.

It should be clear that ω is a closed subset of K , and therefore compact.
Also, as a consequence of the continuous dependence of initial data and the
general nature of solutions of autonomous systems,ω is an invariant set (both
forward and backward) of the dynamical system.

We can now state our version of the main theorem.

1 Theorem. (Poincaré–Bendixson) Under the above assumptions, if ω does
not contain any equilibrium points, then ω is a cycle. Furthermore, either the
given solution x traverses the cycle ω, or it approaches ω as t →+∞.

What happens if ω does contain an equilibrium point?
The simplest case is the case ω= {

x0
}

for an equilibrium point x0. Then it
is not hard to show that x(t ) → x0 as t →+∞. (If not, there is some ε > 0 so
that |x(t )−x0| ≥ ε for arbitrarily large t , but then compactness guarantees the
existence of another omega point in

{
z ∈ K : |z −x0| ≥ ε

}
.)

I said in the introduction that the Poincaré–Bendixson theorem is often
misstated. The problem is that the above two possibilities are claimed to be
the only possibilities. But a third possibility exists: ω can consist of one or
more equilibrium points joined by solution paths starting and ending at these
equilibrium points (i.e., heteroclinic or homoclinic orbits).
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2 Example. Consider the dynamical system

ẋ = ∂H

∂y
+µH

∂H

∂x

ẏ =−∂H

∂x
+µH

∂H

∂y

 , H(x, y) = 1
2 y2 − 1

2 x2 + 1
4 x4.

Notice that if we set the parameter µ to zero, this is a Hamiltonian system. Of
particular interest is the set given by H = 0, which consists of the equilibrium
point at zero and two homoclinic paths starting and ending at this equilib-
rium, roughly forming an ∞ sign.

In general, an easy calculation gives

Ḣ = ∂H

∂x
ẋ + ∂H

∂y
ẏ =µH ·

[(
∂H

∂x

)2

+
(
∂H

∂y

)2]
so that H will tend towards 0 if µ< 0. In particular, any orbit starting outside
the “∞ sign” will approach it from the outside, and the “∞ sign” itself will be
the omega set of this orbit.

Figure 1 shows a phase portrait for µ=−0.02.
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Figure 1: An orbit and its omega set.
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3 The Poincaré–Bendixson theorem

We now turn to the proof of theorem 1.
By a transverse line segment we mean a closed line segment contained in

Ω, so that f is not parallel to the line segment at any point of the segment.
Thus the vector field points consistently to one side of the segment.

Clearly, any non-equilibrium point of Ω is in the interior of some trans-
verse line segment.

3 Lemma. If an orbit crosses a transverse line segment L in at least two dif-
ferent points, the orbit is not closed. Furthermore, if it crosses L several times,
the crossing points are ordered along L in the same way as on the orbit itself.

A

B

C

L

Figure 2: Crossings of a transverse line segment

Proof: Figure 2 shows a transverse line segment L and an orbit that crosses L,
first at A, then at B . Note that the boundary of the shaded area consists of part
of the orbit, which is of course not crossed by any other orbit, and a piece of
the L, at which the flow enters the shaded region. (If B were to the other side
of A, we would need to consider the outside, not the inside, of the curve.) In
particular, there is no way the given orbit can ever return to A. Thus the orbit
is not closed.
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It cannot return to any other point on L between A and B either, so if it ever
crosses L again, it will have to be further along in the same direction on L, as
in the point C indicated in the figure. (Hopefully, this clarifies the somewhat
vague statement at the end of the lemma.)

4 Corollary. A point on some orbit is an omega point of that orbit if, and only
if, the orbit is closed.

Proof: The “if” part is obvious. For the “only if” part, assume that A is a point
that is also an omega point of the orbit through A. If A is an equilibrium point,
we have a special case of a closed orbit, and nothing more to prove. Otherwise,
draw a transverse line L through A. Since A is also an omega point, some fu-
ture point on the orbit through A will pass sufficiently close to A that it must
cross L at some point B . If the orbit is not closed then A 6= B , but then any
future point on the orbit is barred from entering a neighbourhood of A (con-
sult Figure 2 again), which therefore cannot be an omega point after all. This
contradiction concludes the proof.

Outline of the proof of Theorem 1 Fix some x0 ∈ ω, and a transverse line
segment L with x0 in its interior.

If x0 happens to lie on O+ the corollary above shows that the orbit through
x0 must be closed, so ω in fact equals that orbit.

If x0 does not lie on O+ then O+ is not closed. However, I claim that the
orbit through x0 is still closed. In fact, let z0 be an omega point of the orbit
through x0, and draw a transverse line L through z0. If the orbit through x0

is not closed, it must pass close enough to z0 that it must cross L, infinitely
often in a sequence that approaches z0 from one side. In particular, it crosses
at least twice, say, first at A and then again at B (again, refer to Figure 2).

But B is an omega point of O+, so O+ crosses L arbitrarily close to B , and so
O+ enters the shaded area in the figure. But then it can never again get close
to A. This is a contradiction, since A is also an omega point of O+.

We have shown that x0 lies on a closed path. This closed path must be all of
ω. The solution x gets closer and closer to ω, since it crosses a transverse line
segment through x0 in a sequence of points approaching x0, and the theorem
on continuous dependence on initial data does the rest.
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