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This note is about well-posedness of the initial-value problem for a system of
ordinary differential equations:

x(0) = f(x(0),

1
) x(0) = a.

Here f: Q — R" is a mapping defined on an open set Q < R". The initial value
a is supposed to belong to Q, and the unknown function x is to be defined on
an open interval containing ¢ = 0.

By well-posedness of the problem we mean a positive answer to three ques-
tions: (1) Does a solution exist? (2) Is the solution unique? (3) Does the solu-
tion depend continuously on the data (a and the function f)?

Some preliminary definitions and results

Lipschitz continuity. The answer to the question of well-posedness is in gen-
eral negative. It turns out that the natural requirement to obtain a well-posed
problem is Lipschitz continuity of the righthand side f. The function f is
called Lipschitz continuous if there exists a finite constant L so that

|f)-f()|=Lix—yl, foralx,yeQ.

The best such constant L is called the Lipschitz constant for f on Q.

Lipschitz continuity is not uncommon. For example, assume that f is a C!
function, by which we mean that its first order partial derivatives exist and are
continuous. We write D f for the Jacobian matrix of f:

oh oA
0x1 Tt 0xp
Df=1 : T
0fn Ofn
0x1 Tt 0xy

Then, if the whole line segment [x, y] with end points x and y lies within Q,
we can write

1L g 1
f(y)—f(x)zfo af((l—t)x+ty)dt=f0 Df(1-px+ty)dt-(y—x)
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with the result that, if | Df(z)|| < L for all z, (where the norm is the operator

norm of the matrix, seen as an operator on R"), then ‘f(x) - f(y)| <Llx-yl
If f belongs to C! then f is locally Lipschitz continuous, which means that

every point x € Q has a neighbourhood in which f is Lipschitz continuous.

Gronwall’s inequality. In its simplest form, it is this simple fact:

1 Proposition. Let u be a real, differential function on some interval. Assume
that 11(t) < au(t) in this interval. Then e"* u(t) is a nonincreasing function of
t.

Proof: Just differentiate:

%(e“”u(t)) =e ' (u(r) - au(n) <0,

and we’re done. '
We shall not need the general form of Gronwall’s inequality, but for the sake
of completeness, here it is:

2 Proposition. (Gronwall’s inequality) Let u be a real, differential function

on some interval. Assume that ii(t) < g(t)u(t) in this interval. Then e~ % u(f)
is a nonincreasing function of t, where G(t) = g(t).

In particular, for ¢ > 0 we find the traditional form of Gronwall’s inequality:
t
u(t) < u(0) exp([ g() dr),
0

which is just a difficult way of writing e~ ¢V u () < e=¢© 1(0).
The proof is just as easy as for the simplified version above.

Uniqueness

The basic idea relies on the following calculation. We assume that x and y are
two solutions of (1), and note that

d
E'xm -y |=|x@ - y@0| =|f(x@®) - f(y(®)| = L|x(0) - y(1)]|

if f is Lipschitz continuous.

Version 2007-01-16



3 Well-posedness for ODEs

This implies that e~*|x(1) - y(¢)| is non-increasing. But for 7 = 0, this quan-
tity is zero, since x(0) = a = y(0), and so it must be zero for all positive t. (The
same argument holds for negative t, by time reversal: If x(¢) solves (1) then
X(t) = x(—1) solves a similar problem with f replaced by —f. So if we have
uniqueness forward in time, the same must hold backward in time.)

This idea, simple as it is, is somewhat ruined by a couple ugly facts: First,
|x(t) - y(t)| may be non-differentiable at any point where x(f) = y(¢), and
second, a requirement of global Lipschitz continuity is too much. However,
we can adapt the idea to prove

3 Theorem. Assume that f is locally Lipschitz continuous. Then (1) has at
most one solution on any given interval containing 0.

Proof: Assume that x and y are two solutions. Assume also that x(#;) # y(t1)
for some #; > 0 in the given interval. (We can deal with #; < 0 by time reversal.)

Now there is some #y, with 0 < £y < ¢, with x(%) = y(fy) but x(z) # y(¢) for
tp < t < t1. There is some neighbourhood U of x(fy) on which f is Lipschitz
continuous. For ¢ = £y and ¢ — f, small enough, x(¢) and y(#) both belong to
U, and so e‘”|x(t) - y(t)| is non-increasing for these ¢. Since this quantity is
continuous and zero at ¢ = f, and strictly positive for ¢ > f;, that is nonsense.
This contradiction completes the proof. ]

Existence

For an existence proof, we rely on Banach’s fixed point theorem: If X is a com-
plete metric space and ®: X — X is a contraction, then ® has a fixed point
in X. This fixed point is found by iteration: Let xp € X be arbitrary, and let
Xn+1 = D(x,). The sequence (x,) will converge to the fixed point.

To use this on (1), note that (1) is equivalent with

¢
x() = a+f f(x@)dr
0

which says that x is a fixed point of the mapping ® given by

t
O(x) (1) = a+f f(x@)dr.
0

To be specific, we shall work in the metric space X consisting of all functions
x: [-6,8] — B, where B is the closed ball B = {x: |x—al < r}, and r is some
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positive number. We shall assume that f is Lipschitz continuous on B. Let L
be the corresponding Lipschitz constant, and let M be the maximum value of
|f]on B.

We need to ensure that ® really maps X into itself. To this end, estimate

|0()(8) - a| = ‘fotf(x(r))dr| < ‘/Ot|f(x(r))|dr| < M3,

so we need to make sure that M <r.
Second, to make sure that ® is a contraction, estimate

| D) (1) - D) (1)] = ‘fot(f(x(r)) - (@) dr| < (f0t|f(x(r)) - fly@)|ar|
<Lélx-yl,

and so we need to make sure that Lo < 1.
Then @ is a contraction on X, and so we have proved:

4 Theorem. If f is locally Lipschitz then (1) has a solution on some open in-
terval containing 0.

In fact, it is not hard to show that there exists a maximal interval of existence,
that is an open interval I on which (1) has a solution, and so I contains any
other open interval with a solution on it. One simply takes I to be the union
of all open intervals J containing 0 so that (1) has a solution on J. For any
t € I, pick some J on which there exists a solution y, and define x(¢) = y(¢). If
K is another such interval, and z is a solution on K, then J N K is yet another
interval, so the uniqueness theorem shows that y = z on J n K. Therefore our
definition of x(¢) does not depend on the particular choice of J.

5 Theorem. Let the maximal interval of existence be (a, b), where —oo < a <
0 < b <oo. If b < oo, there is a sequence (ty) in this interval with t;, — b, so
that either | x(ty)| — oo, or dist(x(),0Q) — 0.

Similarly, if a > —oo, there is a sequence with these properties converging
to a.

Here 09} is the boundary of Q.

Proof sketch: Assume not. Then there is a constant M < co and a € > 0 so that
|x(#) < M| and dist(x(#),0Q) whenever 0 < ¢ < b. That is, x(¢) belongs to the
compact set

K ={xeQ: |x(¢) < M| and dist(x(1),0Q)}.
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By compactness, there is a sequence (#;) with fx — b and x(#;) — z€ K.
From the proof of the existence result above, there exists some § > 0 so that
the initial value problem can be solved in [—§, d] for all initial values in some
neighbourhood of z. That means the same is true for an initial value x(#;)
for all sufficiently large k, so the solution can be extended at least up to time
t = t+6. Since tx — b and the solution cannot be extended beyond ¢ = b, this
is absurd. ]

Continuous dependence on data

I shall only consider the dependence on the initial value a. Assume that x
solves (1), and that y solves the same system, but with initial data y(0) =
b. If f is Lipschitz continuous with Lipschitz constant L, we have seen that
e~|x(t) - y(1)| is non-increasing, so that

|x(6) - y()] < 1| x(0) - y(0)]

(I added a strategic absolute value in the exponent on the righthand side, so
the result can also be used for ¢ < 0. It’s another use of time reversal.) So the
solution depends continuously on the initial data. (The dependence is locally
Lipschitz continuous, but that takes a bit of effort to prove, so I'll skip it.)

If f is smoother, then we can even conclude that the solution depends on
the initial data in a differentiable way:

Write now x(t, a) for the solution with initial condition «, so that (1) can be
written

0x
E _f(x(t) a))r
x(0,a)=a

Assuming for a moment that f is differentiable with respect to a, with contin-
uous partial derivatives, we expect to find

0 Ox 0 0x 0
513, " 34, 31~ 9, (@) =Df (x(1,)

0x
aaj
so that dx/dayj itself satisfies a differential equation. It will also satify the initial
condition 0x/da;(0) = e, where e; is the jth unit vector.

So one can turn this argument inside out: Assuming that D f is Lipschitz
continuous, the problem z; = Df(x(t,a))z;j, z;(0) = e; has a solution, and
that solution can then be shown to be the partial derivative dx/0a;.
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Odds and ends

Non-autonomous systems. The initial value problem for a non-autonomous
system

x(1) = f(x(1), 1),
x(0) = a.

can be reduced to the autonomous form (1) by writing w(t) = (x(t), t) and
solving the autonmous system

w(t) = f(w(),
w(0) = (a,0).

This may not be the best way to study non-autonomous systems, but it does
show that the well-posedness results extends to this case.

Continuous dependence on f. Assume that f depends on further parameters
beR™:

x(0) = f(x(0),b),
x(0) = a.

A rather silly looking way to solve this is to write w(t) = (x(t), b) and to solve

w(t) = (f(w(),0),
w(0) = (a,b).

That is, we add the components b to x and add equations saying that those
components of w are constants (their derivatives are zero).

Note that the b moved from f into the initial conditions. It follows that the
solution depends continuously (smoothly, if f is smooth) on b.
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