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Exercise B.1. 1 will not write up the proof that d, is a metric. I gave so many hints, the rest is just
elementary calculus.

Now, let f be a linear functional on LP, where 0 < p < 1. If f is continuous then (picking ¢ = 1)
there is some § > 0 so that d,(z,0) < § = |f(x)| < 1. In other words, |z|, < 6*/? = |f(x)| < 1. Thus
lzll, < 1= |f(z)] < 7P, so f is bounded. Conversely, if f is bounded, say ||z|, < 1 = |f(z)| < M, then
in a similar way we find d,(x,0) < (¢/M)? = |f(z)| < &, so f is continuous at 0. Since the metric d, is
translation invariant (d,(z + z,y + z) = d(x,y)), it follows that f is continuous everywhere.

Now let f be a nonzero continuous linear functional on LP. As remarked in the problem, we may replace
f by a multiple of itself and so assume

sup [ F(w)] = 1. )
llull,=1
(At the outset, the supremum is finite because f is bounded, and it is positive because f is nonzero.)
Let v € LP with |ju|l, = 1. If w = u; + us and ujus = 0, that means there is a measurable subset E of
[0,1] so that ug is zero on E and wuq is zero on E€ = [0,1] \ E. Thus
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In order to get [luy |5 = ||luz||5 = 5 all we need is to determine E so that [ |ul? dz = . But just pick E = [0, 1],
notice that then the integral is a continuous function of ¢ which increases from 0 to 1, and use the intermediate
value theorem.

Thus, for k& = 1,2 we find H21/”uk||g = 1 so that |27 f(u)| < 1. Thus |[f(u)] < |f(u1)| + |f(u2)| <
2-1/P 4 271/P = 21=1/P_ Since 0 < p < 1 then 1 —1/p < 0, so 2'~1/? < 1. But then this contradicts (1).

Exercise B.2. First, let X be an ordered vector space with X* = {z € X: 2 > 0}.

Then 0 € Xt because 0 > 0. Given a scalar ¢ > 0 and vector z € X1, we find cx € XT because ¢ > 0 and
x > 0 imply cx > ¢0 = 0.

Ifze XTN(=XT) then 2 > 0 and —z > 0. Adding = to the latter inequality we get 0 > 2, and x = 0
follows.

If 2,9 € X then we can add y tox > 0 to get z+y > y. Since alsoy >0weget z+y >0,s0z+y € XT.

To show that X is convex, apply the previous result to tx and (1 — t)y, where ¢ € [0, 1].

And finally, assuming convexity and z,y € X, we find (z +y) € X* by convexity. Multiply by 2 to
conclude z +y € XT.

Now let X be a proper convex cone in X, and define x <y <y —2 € X*. Then z < z becuse 0 € X,
x <yand y <z imply z = y because x —y € X N (—=X*1) = {0}, and z < y < z implies x < z because
z—x=(2—y)+ (y—=) with z—y € XT and y — x € XT. So far, we have shown that < is a partial order.
Ifz <yandc>0thency —cr =cly—x) € X, s0cx <cy. Also (y+v)—(r+v)=y—z€ X, so
z+v<y+wv.

Exercise B.3. First, if —ce <z < ce then ¢ > 0, since e € X*. Thus ||z|| > 0.

If ||z|| = 0 then x < ce for all ¢ > 0. Thus ¢~z < e for all ¢ > 0, and so z < 0 by the second order unit
axiom. Similarly, x > —ce for all ¢ > 0, or —cx < e for all ¢ > 0, which implies —z < 0, so x > 0. We conclude
2 =0 when ||z|| = 0.

When —ce <z < ce and —de < y < de we find —(c+ d)e <z + y < (¢ + d)e. Taking the infimum over all
¢ and d we get 2+ yl| < o] + 1]l

Multiplying the inequality —ce < x < ce by a real number ¢ # 0 we find the equivalent —cte < tx < cte
(even if t < 0). Thus |tz| = |¢|||z| follows.

We have shown that ||-|| is a norm.

Clearly, we have = < ce for every ¢ > ||z||. Write this inequality as z — [|z]le < (¢ — ||z]])e, so that
x — ||z|le < te for all t > 0. Thus = — ||z]le < 0 by the second order unit axiom. In other words, z < ||zle.
The inequality « > —||z||e follows in a similar way, or more simply by replacing = by —z.



Exercise B.4. From the definition of the state space we immediately get z < y = f(z) < f(y), when f € S.
Thus —||z|| f(e) < f(z) < ||z| f(e) follows, and therefore |f(x)| < ||z| since f(e) = 1. Thus ||f|| < 1. But also
I/l > 1 because f(e) = 1 = |le]|]. Thus S is a subset of the closed unit ball of X*. Tt is a weakly* closed
subset, because of the way it is defined in terms of weakly* continuous functionals f — f(z) with z € X.
Since the closed unit ball of X* is weakly® compact, then so is the weakly* closed subset S.

Exercise B.5. Certainly, if z € X and « > 0 then f(x) > 0 for all f € S, by the very definition of S.

Assume now instead = # 0, but still f(z) > 0 for all f € S. We shall use the Hahn—Banach separation
theorem to separate x from X+. Actually, we need a little bit more: We really should separate a neighbourhood
of z from X™*. Certainly, we can find some ¢ > 0 so that x +ce ¢ X*. For otherwise —z < e for every ¢ > 0,
which would imply —x < 0, i.e.,, > 0. So now the e-ball B.(z) = {z: z —ee < z < x + ee} is disjoint from
X+, and z is an interior point in it. Thus the Hahn-Banach separation theorem guarantees the existence of
a constant ¢ with f(z) < ¢ < f(w) for every w € X ™.

Now ¢ < 0 because 0 € X*. If f(w) < 0 for some w € X then tw € X* for all ¢ > 0, and f(tw) =
tf(w) < cif t is large enough. This contradiction shows that f(w) > 0 for all w € X, so we might as well
pick ¢ = 0.

Now f(e) > 0, for we find —||z]|f(e) < f(2) < ||z]|f(e) for all z, so if f(e) = 0 then f would be the
zero functional. Replace f by f/f(e). Then f(e) = 1, and it follows that f € S. But this contradicts the
assumption that f(z) >0 for all f € S.

Exercise B.6. The hint was perhaps stated in too complicated a way. Better: Assume that z £ ce whenever
¢ < ||z||. (If not, it must be true of —z instead, so we replace x by —z.) Thus, whenever ¢ < ||z|| we find
ce —x # 0, so there is some f € S with f(ce — ) < 0, i.e., f(z) > ¢. Therefore sup;cg|f(z)| > [[z[|. The
opposite inequality is obvious.

Exercise B.7. Clearly, co(S U —S) is contained in the (closed) unit ball of X*. Moreover, since S is weakly*
compact and convex, then so is co(S U —S): For this is the image of the compact set [0, 1] x S x S under the
continuous map (¢, f,g) — tf + (1 —t)g.

If co(S U —Y5) is not the whole unit ball of X*, pick h € X* with ||h|| < 1 and h ¢ co(S U —S). By
Hahn-Banach separation there is a weakly* continuous functional separating h from co(S U —S5). But this
then belongs to X. Le., there is some x € X and a constant ¢ so that h(z) > ¢ > f(z) for all f € co(SU—-S).
Then ¢ > 0, and |f(x)| < ¢ for all f € S. By the previous problem, then ||z|| < ¢. But this contradicts the
inequalities ||| < 1, ||z|| <1, and h(z) > c.



