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Abstract. This little note may become a part of my functional analysis notes, later.

Recall that a subset of a metric space is called rare if its closure has empty
interior. Equivalently, it is contained in a closed set with empty interior. Any
countable union of rare sets is called meager. Other sets are called non-meager.

1 Theorem. (Baire) Any nonempty complete metric space is non-meager in itself.

Proof: Let X be a nonempty complete metric space. We only need to show that
X is not the union of any countable family of closed sets with empty interior.

The complement (relative to X ) of a closed set with empty interior is a dense,
open set. Thus we only need to show that no countable intersection of dense,
open subsets of X is empty.

We shall show a little bit more:
Any countable intersection of dense, open subsets of X is dense.
So let Vk be a dense, open subset of X for k = 1,2, . . . and let U be a nonempty,

open set.
Since V1 is dense, we can find some x1 ∈U∩V1. And because U∩V1 is open, we

can find some 0 < ε1 < 1 so that the closed ε1-ball B̄ε1 (x1) around x1 is contained
in U ∩V1.

Next, because V2 is dense, we can similarly find x2 ∈ Bε1 (x1)∩V2, and some
0 < ε2 < 1/2 with B̄ε2 (x2) ⊆ Bε1 (x1)∩V2.

Continuing in this way, we find xk ∈ Bεk−1 (xk−1)∩Vk , and some 0 < εk < 1/k
with B̄εk (xk ) ⊆ Bεk−1 (xk−1)∩Vk , for k = 3,4, . . ..

Now if m,n ≥ k then xm , xn ∈ Bεk (xk ), so d (xm , xn ) < 2εk < 2/k . Therefore the
sequence (xk ) is Cauchy, and thererfore convergent, since X is complete. Let x
be its limit.

Since xn ∈ Bεk (xk ) when n ≥ k , we find x ∈ B̄εk (xk ) ⊆ Vk . Thus x ∈ ⋂∞
k=1 Vk .

But also x ∈ B̄ε1 (x1) ⊆U , so U ∩⋂∞
k=1 Vk is not empty. Since U was an arbitrary

nonempty open set,
⋂∞

k=1 Vk is dense.

If X is a normed space, we write X1 for its closed unit ball:

X1 = {x ∈ X : ‖x‖ ≤ 1}.

Clearly, the closed ε-neighbourhood of any z ∈ X is z +εX1, which by definition
is {z +εx : x ∈ X1}; and any neighbourhood of z contains z +εX1 for some small
ε> 0.
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It will be useful to note that multiplication by any nonzero scalar is an iso-
morphism of X to itself, and so it maps open sets to open sets, closed sets to
closed sets, etc. We may call this the scale invariance of the topology: For exam-
ple, if A ⊆ X and c 6= 0 then c A = c A, where the overline denotes closure (not to
be confused with complex conjugation).

Let X and Y be two normed spaces, and T : X → Y a linear map. We say T is
an open map if T (U ) is open in Y whenever U ⊆ X is open.

2 Lemma. A linear map T : X → Y is open if, and only if, T (X1) is a neighbour-
hood of 0 in Y .

Proof: If T is open then the image {T x : ‖x‖ < 1} of the open unit ball in X is
open in Y . Since it contains 0, its superset T (X1) is a neighbourhood of 0.

Conversely, assume that T (X1) is a neighbourhood of 0: Then εY1 ⊆ T (X1) for
some ε> 0.

Let U be an open subset of X . If u ∈U , pick δ > 0 so that u +δX1 ⊆U . Then
Tu +δT (X1) ⊆ T (U ), and therefore Tu +δεY1 ⊆ T (U ), so that Tu is interior in
T (U ). Thus every member of T (U ) is interior, i.e., T (U ) is open.

3 Theorem. (Open mapping) Any bounded linear mapping of one Banach space
onto another Banach space is open.

Proof: Let T : X � Y be a bounded linear map of Banach space X onto Banach
space Y . The proof proceeds in several stages.

First note that from Y = T (X ) and X =⋂∞
k=1 k X1 we get Y =⋂∞

k=1 kT X1.1 From
the Baire theorem, therefore, and the completeness of Y , at least one of the sets
kT X1 is not rare. But by scale invariance that means T X1 is not rare; i.e., T X1

contains an interior point. Say,

y0 +εY1 ⊆ T X1.

Second, pick any y1 ∈ Y1. Since y0 and y0 +εy1 both belong to T X1, we find

εy1 = (y0 +εy1)− y0 ∈ T X1 +T X1 = 2T X1.

Of course the final equality requires justification, but this is not hard: If (xk )
and (zk ) are two sequences in X1 so that (T xk ) and (Tzk ) both converge, then
T (xk + zk ) is a sequence in 2X1 which converges to the sum of the two limits.2

But this shows that εY1 ⊆ 2T X1, or let us rather say

1
2εY1 ⊆ T X1

1We skip the parentheses in T (X1) for convenience.
2Mopping up the details is left to the reader.
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– so we now know that 0 is an interior point of T X1.
Third, let us stop for a moment and think about what it means to be in the

closure of a subset A ⊆ Y : To say that y ∈ A is to say that, for every δ > 0 there
is some member of A whose distance to y is at most δ. But that is the same as
saying y ∈ A+δY1.

In particular, we now return to the above inclusion, which implies 1
2εY1 ⊆

T X1 +δY1 for any δ> 0. Let us pick a clever value for δ:

1
2εY1 ⊆ T X1 + 1

4εY1. (1)

To be very specific about this, let y0 ∈ 1
2εY1 and use (1) to pick x0 ∈ X1 and

y1 ∈ 1
2εY1 with

y0 = T x0 + 1
2 y1.

Next, we do the same to y1, and pick x1 ∈ X1 and y2 ∈ 1
2εY2 with y1 = T x1 + 1

2 y2.
Put together, we have

y0 = T x0 + 1
2 T x1 + 1

4 y2.

Do the same to y2 and get

y0 = T x0 + 1
2 T x1 + 1

4 T x2 + 1
8 y3.

By an easy induction, we arrive at

y0 =
n−1∑
k=0

2−k T xk +2−n yn , xk ∈ X1, yn ∈ 1
2εY1.

In the end, it is clear that the sum

∞∑
k=0

2−k T xk

converges, because ‖xk‖ ≤ 1 for each k (this is where we use the completeness
of X ), and if the sum is called x then ‖x‖ ≤ 2, and in the limit we get y0 = T x
(and this is where we use the boundedness of T ).

Thus we have found that 1
2εY1 ⊆ 2T X1, and that completes the proof that T

is open.
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