Exercise set 1 For TMA4230 Functional analysis

2006-01-23

Exercise 1.1. Show that l^1 is dense in c_0 . Conclude from this that l^1 is not a closed subspace of l^{∞} . (Hint: If $x \in c_0$, consider the sequence $(x_1, x_2, ..., x_n, 0, 0, ...)$ and then let $n \to \infty$.)

Exercise 1.2. Recall that the *norm* of a linear map $T: X \to Y$, where X and Y are normed spaces, is defined as

 $||T|| = \sup\{||Tx||: x \in X, ||x|| \le 1\}.$

T is called *bounded* if $||T|| < \infty$. It is called an *isomorphism* if it is bounded and has a bounded inverse. *X* and *Y* are called *isomorphic* if there exists an isomorphism between the two spaces.

Show that *c* and *c*₀ are isomorphic. (Hint: Consider the map $x \mapsto (x_{\infty}, x_1 - x_{\infty}, x_2 - x_{\infty}, ...)$, where $x_{\infty} = \lim_{k \to \infty} x_{x}$.)

Exercise 1.3. Look at the definition of *extreme points* in the section on the Krein–Milman theorem (p. 59 in the present version of the notes).

The *closed unit ball* of a normed space *X* is the set of vectors $x \in X$ with $||X|| \le 1$.

Show that if *H* is an inner product space then $x \in H$ is an extreme point of the unit ball of *H* if, and only if, ||x|| = 1. (Hint: Use the parallelogram law $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$.)

Show that $x \in c$ is an extreme point of the closed unit ball of c if, and only if, $|x_k| = 1$ for every k. Show that the closed unit ball of c_0 has no extreme points.

Two normed spaces are called *isometric* if there exists an isometry between the two with norm 1; i.e., an isomorphism whose inverse also has norm 1. In other words, an isomorphism *T* with the property that ||Tx|| = ||x|| for all *x*.

Show that an isometry maps extreme points of the unit ball of one space onto the extreme points of the unit ball of the other space, and conclude that c and c_0 are not isometric.