Exercise Set 8

Problem 1 The system is
& =a+2y— (' +y) (1)
g=—2z+y—yl'+y"). (2)
The critical points are solutions of

r+2y —a(zt +y) =0
-2z 4y —y(z* +y*) =0.

We multiply the first equation by y, the other by = and take the difference. We
get

22 +y? =0.
Hence, (0,0) is the unique critical point of the system. One can see that it is
an unstable focus by looking at the eigenvalues of the linearized system.

Consider the closed annulus A delimited by the two circles C(R;) and C(Rz)
of center 0 and radius R; and Ry respectively. A is a closed bounded region
which contains no critical point. We are going to prove that, provided R; is big
enough and Rs small enough, any path that lies in A at some time ¢y remains
in A for all ¢ > ty3. Then the Poincaré-Bendixon theorem says that there exists
a closed path.

The trajectory cannot leave the annulus A
(The arrows are just indicative)

We multiply (1) by  and (2) by y, add the two resulting equations and get

ix+ygy=a2>+y° — (@* +¢y°) (2" +y*)



or

LIrdI? = 22> + 591 — 2" — ) ®

where 7 denotes the vector (z,y)* and ||r|| = (z® + y?)'/? is the standard eu-
clidian norm.

When 22 + y? tends to oo, the right-hand side in (3) tends to —oo. Hence, we
can choose R; so that

d, 2

— < -1 4

i) (@
whenever ||r(t)|] > Ry. Then it is pretty clear that a trajectory cannot leave the
annulus through a point of C'(R;) because the flow pushes any point on C(Ry)

back towards the center. If one wants to give a detailed proof of this statement,
one can proceed as follows.

Consider now a path r(¢) which for some tg lies in A. Assume that it does not
remain in A. Then we can define the time ¢ when r(t) first leaves A:

t=sup{t>to | r(t) € A, Vt <t}

We have r(t) € DA. We first consider the case when r(t) leaves A by a point of
C(Ry) : r(t) € C(Ry). By definition of ¢, there exists a sequence ¢, converging
to t such that r(t,) € A°. In the case we are considering where r(t) € C(R;)
we necessarily have

[ (tn)ll > Ra

But
(ta) | > RY and ||r(7)|*> = R}

implies that

d 2

ZIr®llj= 20 ()
which contradicts (4)

In a similar way, one can prove that r(t) never leaves A through the circle C'(R2).
In this case we have to take Ro small enough so that for some € > 0

d
I (t)I?
L)) > <

for any t such that ||7(t)|| = Rz. Hence we have proved that r(t) remains in A
for ¢ > to.

Problem 2

(a) The system has three equilibrium points :

P=0, P=m, P=M.



If we set

pP_ P
F(P)y=kP(1~37)(—~1)
the system writes .
P = f(P).

Since fp(0) = —k < 0 and fp(M) = —k(2 — 1) < 0, 0 and M are stable
equilibrium points while m is an unstable equilibrium point because fp(m) =
k(1 — ) >0.

If the initial number of moose P(0) lies between 0 and m then the population
dies out. P(t) converges to the equilibrium point 0. If P(0) is bigger than m
then the population stabilizes around M.

f(P)

(b) The equilibrium points of the system are solutions of
Pl—P)—J=0

1
—~J+JP=0
2
which gives three equilibrium points
(P.1) = (0,0), 0.1), (3,7)
) - ) ) ) b 2 ) 4 M
At (P, J) = (0,0), a linearization of the system gives the matrix
6 -4)
1
0 —3

whose eigenvalues are —% and 1. (2,1)" and (1,0)" are two corresponding eigen-
vectors. (0,0) is a saddle.

At (P,J) = (3, 1), the linearized system gives rise to the matrix

(%)



whose eigenvalues are purely imaginary. Hence (%, i) is a center for the lin-
earized system, but not necessarily for the nonlinear system.

At (1,0), the linearized system is given by the matrix
(0 3)
1
0 3
and the eigenvalues are —1 and 1. (1,0) is a saddle.

We now plot the phase plane diagram of the system. P vanishes on the curve

C:

J=P(1-P)
while .J vanishes when
P=—-orJ=
|
-
I

= - /1/_; \\/1\
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We now claim that there exists a family of closed paths which circle around

the equilibrium point (%, i) In order to prove that we consider the trajectory

(P(t), J(t)) solution of the system for the initial condition

with Jy € (0,3).

One can prove that (P(t), J(t)) successively hits C and the line P = 1. So there
exists ¢ such that

We denote J the value of J at t.



The system is invariant under the transformation P ~ 1 — P, t ~ —t which
means that

P(t)=1- P(-t)
J(t) = J(—t)

is also solution of the system. The system is also invariant under time translation
( one can shift the time origin ). Therefore, we can reset P, J as

P(t)=1— P(—t +2%)
J(t) = J(—t + 2t)

and P, J are still solutions of the system.

However, since we have

- 1 -_

) = 5,00 =7,
(P,J) and (P,J) are equal at f. The fact that the solution of the system is
unique when the initial condition are the same implies that

P=Pand J=J
Taking ¢t = 0 gives

P(0)=1- P(21)
J(2F) = J(0).
Hence,
P(2t) = P(0)
J(2F) = J(0).

This implies that the solution is periodic because (P(t + 2t),J(t + 2t)) and
(P(t),J(t)) are now two solutions of the system for the same initial condition.
By unicity of the solution, we must have

P(t+2t) = P(t)

J(t+2t) = J(t)



