
Exercise Set 8

Problem 1 The system is

ẋ = x + 2y − x(x4 + y4) (1)

ẏ = −2x + y − y(x4 + y4). (2)

The critical points are solutions of

x + 2y − x(x4 + y4) = 0

−2x + y − y(x4 + y4) = 0.

We multiply the first equation by y, the other by x and take the difference. We
get

x2 + y2 = 0.

Hence, (0, 0) is the unique critical point of the system. One can see that it is
an unstable focus by looking at the eigenvalues of the linearized system.

Consider the closed annulus A delimited by the two circles C(R1) and C(R2)
of center 0 and radius R1 and R2 respectively. A is a closed bounded region
which contains no critical point. We are going to prove that, provided R1 is big
enough and R2 small enough, any path that lies in A at some time t0 remains
in A for all t > t0. Then the Poincaré-Bendixon theorem says that there exists
a closed path.

R1

R2

C(R1)

C(R2)

A

The trajectory cannot leave the annulus A

(The arrows are just indicative)

We multiply (1) by x and (2) by y, add the two resulting equations and get

ẋx + ẏy = x2 + y2 − (x2 + y2)(x4 + y4)
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or
d

dt
‖r(t)‖2 = 2(x2 + y2)(1 − x4 − y4) (3)

where r denotes the vector (x, y)t and ‖r‖ = (x2 + y2)1/2 is the standard eu-
clidian norm.

When x2 + y2 tends to ∞, the right-hand side in (3) tends to −∞. Hence, we
can choose R1 so that

d

dt
‖r‖2 < −1 (4)

whenever ‖r(t)‖ ≥ R1. Then it is pretty clear that a trajectory cannot leave the
annulus through a point of C(R1) because the flow pushes any point on C(R1)
back towards the center. If one wants to give a detailed proof of this statement,
one can proceed as follows.

Consider now a path r(t) which for some t0 lies in A. Assume that it does not
remain in A. Then we can define the time t when r(t) first leaves A:

t = sup{t ≥ t0 | r(t̃) ∈ A, ∀t̃ ≤ t}

We have r(t) ∈ ∂A. We first consider the case when r(t) leaves A by a point of
C(R1) : r(t) ∈ C(R1). By definition of t, there exists a sequence tn converging
to t such that r(tn) ∈ Ac. In the case we are considering where r(t) ∈ C(R1)
we necessarily have

‖r(tn)‖ > R1

But
‖r(tn)‖2 > R2

1
and ‖r(t)‖2 = R2

1

implies that
d

dt
‖r(t)‖2

|t=t ≥ 0 (5)

which contradicts (4)

In a similar way, one can prove that r(t) never leaves A through the circle C(R2).
In this case we have to take R2 small enough so that for some ε > 0

d

dt
‖r(t)‖2 > ε

for any t such that ‖r(t)‖ = R2. Hence we have proved that r(t) remains in A

for t ≥ t0.

Problem 2

(a) The system has three equilibrium points :

P = 0, P = m, P = M.
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If we set

f(P ) = kP (1 −
P

M
)(

P

m
− 1)

the system writes
Ṗ = f(P ).

Since fP (0) = −k < 0 and fP (M) = −k(M
m − 1) < 0, 0 and M are stable

equilibrium points while m is an unstable equilibrium point because fP (m) =
k(1 − m

M ) > 0.

If the initial number of moose P (0) lies between 0 and m then the population
dies out. P (t) converges to the equilibrium point 0. If P (0) is bigger than m

then the population stabilizes around M .

f(P )

P

M

m

0

(b) The equilibrium points of the system are solutions of

P (1 − P ) − J = 0

−
1

2
J + JP = 0

which gives three equilibrium points

(P, J) = (0, 0), (0, 1), (
1

2
,
1

4
).

At (P, J) = (0, 0), a linearization of the system gives the matrix

(

1 −1
0 − 1

2

)

whose eigenvalues are − 1

2
and 1. (2, 1)t and (1, 0)t are two corresponding eigen-

vectors. (0, 0) is a saddle.

At (P, J) = ( 1

2
, 1

4
), the linearized system gives rise to the matrix

(

0 −1
1

4
0

)
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whose eigenvalues are purely imaginary. Hence ( 1

2
, 1

4
) is a center for the lin-

earized system, but not necessarily for the nonlinear system.

At (1, 0), the linearized system is given by the matrix

(

−1 −1
0 1

2

)

and the eigenvalues are −1 and 1

2
. (1, 0) is a saddle.

We now plot the phase plane diagram of the system. Ṗ vanishes on the curve
C:

J = P (1 − P )

while J̇ vanishes when

P =
1

2
or J = 0.

P = 1

2 C : P (1 − P ) − J = 0

We now claim that there exists a family of closed paths which circle around
the equilibrium point ( 1

2
, 1

4
). In order to prove that we consider the trajectory

(P (t), J(t)) solution of the system for the initial condition

P (0) =
1

2
, J(0) = J0

with J0 ∈ (0, 1

4
).

One can prove that (P (t), J(t)) successively hits C and the line P = 1

2
. So there

exists t such that

P (t) =
1

2
.

We denote J the value of J at t.
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J

P = 1

2 C : P (1 − P ) − J = 0

J0

The system is invariant under the transformation P y 1 − P , t y −t which
means that

P̃ (t) = 1 − P (−t)

J̃(t) = J(−t)

is also solution of the system. The system is also invariant under time translation
( one can shift the time origin ). Therefore, we can reset P̃ , J̃ as

P̃ (t) = 1 − P (−t + 2t)

J̃(t) = J(−t + 2t)

and P̃ , J̃ are still solutions of the system.

However, since we have

P̃ (t) =
1

2
, J̃(t) = J,

(P̃ , J̃) and (P, J) are equal at t. The fact that the solution of the system is
unique when the initial condition are the same implies that

P̃ = P and J̃ = J

Taking t = 0 gives

P (0) = 1 − P (2t)

J(2t) = J(0).

Hence,

P (2t) = P (0)

J(2t) = J(0).

This implies that the solution is periodic because (P (t + 2t), J(t + 2t)) and
(P (t), J(t)) are now two solutions of the system for the same initial condition.
By unicity of the solution, we must have

P (t + 2t) = P (t)

J(t + 2t) = J(t)
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