Suggested solution for exercise Set A

a In component form the two given equations (1) and (2) become !
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With a scaling as indicated in the problem text we must have
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for (6) to be correctly scaled, and (6) will then have the form
Uy +vy=0. (10)

Moreover, turning (9) upside down we get two equal time scales, one “vertical” and
one “horizontal” - so this will be a prime candidate for our time scale:
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The pressure varies from 0 at the surface to = pgH at the bottom, so

p* =pgHp
(as in the problem text) seems reasonable. If we introduce this into (7) we get

u U v gH _2 -

?ut+ Tuux+ ?vuy: —Tpx+vU(L Uxx + H “uyy)
where the three fractions on the left hand side are all equal, so a good scaling would
make gH/L equal to these (we expect viscous forces to play a minor role, so the final
part of the righthand side will be small). Thus we should have

U? = gH,
and a bit of computing yields
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while (8) becomes
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1Equation numbers (1)(5) in what follows refer to the equations of the problem text.



For tidal waves in the North Sea we find

U=+/gH=30m/s,
L=UT =30m/s-6-3600s =~ 600km,

€= H/L~100m/600km ~2-107%,
Re = UH/v = 30m/s-100m/(10~%m?/s) =3-10°

so that 1/¢Re =~ 1075 and it seems reasonable to expect that (10), (11) (12) can be
simplified to the system (3).

For a given fluid particle we find

d’x _du dx dy B _

W = E = ut+aux+auy— u,+uux+vuy——px—— x
by using the middle equation in (3), and finally the relation p = h(x, t) — y noted in
the problem text. In particular, since h, is independent of y, the uniqueness theory
for second order differential equations shows that all fluid particle starting with the
same x value (but different y) will continue to have the same x value for every fu-
ture time, provided only that they all had the same value for x = u initially. This is
precisely so when u is independent of y initially. So all the particles that shared the
same x value initially will share the same x value in the future, and hence the same
u value. So u is independent of y, as claimed.

This implies u, = 0. So the leftmost part of equation (3) simplifies to the (4) as

claimed (once again, we use py = hy).

A fluid particle on the surface satisfies y = h(x, t). Differentiation of this relationship
with respect to ¢ yields
v="hyu+h; fory=nh(x,1)

Since v = 0 whenever y = 0 we find, using Green’s formula:
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where we have used that udy = uh, dx along the curve y = h(x, t). from this h; +
(uh)x = 0 by the usual argument (i.e., using the Reymond-duBois lemma).

This is a standard conservation law in differential form, with conserved quantity
h and flux uh. This makes sense, as the integral of & becomes an area (which be-
comes volume if we multiply by some arbitrary length along the suppressed space
direction) and uh is the total transport of water past a given point (in m?/s, which
becomes m3/s if we multiply by the same arbitrary length). So this equation ex-
presses the conservation of volume, which is equivalent with conservation of mass
so long as the density is considered constant.



