
Suggested solution for exercise Set A

a In component form the two given equations (1) and (2) become 1

∂u∗

∂x∗ + ∂v∗

∂y∗ = 0 (6)

∂u∗

∂t∗
+u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ =− 1

ρ

∂p∗

∂x∗ +ν∇∗2u∗ (7)

∂v∗

∂t∗
+u∗ ∂v∗

∂x∗ + v∗ ∂v∗

∂y∗ =−g − 1

ρ

∂p∗

∂y∗ +ν∇∗2v∗ (8)

With a scaling as indicated in the problem text we must have

U

L
= V

H
(9)

for (6) to be correctly scaled, and (6) will then have the form

ux + vy = 0. (10)

Moreover, turning (9) upside down we get two equal time scales, one “vertical” and
one “horizontal” – so this will be a prime candidate for our time scale:

T = L

U
= H

V

The pressure varies from 0 at the surface to ≈ ρg H at the bottom, so

p∗ = ρg Hp

(as in the problem text) seems reasonable. If we introduce this into (7) we get

U

T
ut + U2

L
uux + UV

H
vuy =− g H

L
px +νU(L−2uxx +H−2uy y )

where the three fractions on the left hand side are all equal, so a good scaling would
make g H/L equal to these (we expect viscous forces to play a minor role, so the final
part of the righthand side will be small). Thus we should have

U2 = g H ,

and a bit of computing yields

ut +uux + vuy =−px + 1

εRe
(ε2uxx +uy y ), (11)

while (8) becomes

ε2(vt +uvx + vvy ) =−1−py + ε

Re
(ε2vxx + vy y ). (12)

1Equation numbers (1)–(5) in what follows refer to the equations of the problem text.
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For tidal waves in the North Sea we find

U =√
g H ≈ 30m/s,

L =UT ≈ 30m/s ·6 ·3600s ≈ 600km,

ε= H/L ≈ 100m/600km ≈ 2 ·10−4,

Re =UH/ν≈ 30m/s ·100m/(10−6m2/s) = 3 ·109

so that 1/εRe ≈ 10−5 and it seems reasonable to expect that (10), (11) (12) can be
simplified to the system (3).

b For a given fluid particle we find

d2x

dt 2 = du

dt
= ut + dx

dt
ux + d y

dt
uy = ut +uux + vuy =−px =−hx

by using the middle equation in (3), and finally the relation p = h(x, t )− y noted in
the problem text. In particular, since hx is independent of y , the uniqueness theory
for second order differential equations shows that all fluid particle starting with the
same x value (but different y) will continue to have the same x value for every fu-
ture time, provided only that they all had the same value for ẋ = u initially. This is
precisely so when u is independent of y initially. So all the particles that shared the
same x value initially will share the same x value in the future, and hence the same
u value. So u is independent of y , as claimed.

This implies uy = 0. So the leftmost part of equation (3) simplifies to the (4) as
claimed (once again, we use px = hx ).

c A fluid particle on the surface satisfies y = h(x, t ). Differentiation of this relationship
with respect to t yields

v = hx u +ht for y = h(x, t )

Since v = 0 whenever y = 0 we find, using Green’s formula:

0 =
Ï

R
(ux + vy ) dx d y =

∫
∂R

(−v dx +u d y)

=
∫ x2

x1

(
(hx u +ht ) dx −uhx dx

)+u(x2, t )h(x2, t )−u(x1, t )h(x1, t )

=
∫ x2

x1

(ht + (uh)x )dx

where we have used that u d y = uhx dx along the curve y = h(x, t ). from this ht +
(uh)x = 0 by the usual argument (i.e., using the Reymond–duBois lemma).

This is a standard conservation law in differential form, with conserved quantity
h and flux uh. This makes sense, as the integral of h becomes an area (which be-
comes volume if we multiply by some arbitrary length along the suppressed space
direction) and uh is the total transport of water past a given point (in m2/s, which
becomes m3/s if we multiply by the same arbitrary length). So this equation ex-
presses the conservation of volume, which is equivalent with conservation of mass
so long as the density is considered constant.
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