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This little note is a supplement to the next-to-last part of the course
notes, pp. 43–48. I am not going to rederive the equations here. (But I
will remark that life becomes a little bit simpler if you chose θ0 = π/2 in
the control volume for the impulse balance.

The mass balance and impulse balance become equations (190) and
(196) in the compendium (in compact but hopefully unambiguous no-
tation):
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Assuming stationary flow, we throw away the first term in each equation
(with the time derivative). Further ignoring the friction term (i.e., setting
C f = 0) and assuming a smooth solution, we end up with the two equa-
tions

(rhv)′ = 0, (1)

(rhv2 + 1
2 g rh2)′ = 1

2 g h2 (2)

where the prime means differentiation with respect to r .
With all these assumptions, Bernoulli’s law really should be built into

these equations. And it is!
First, note that the first term in (2) is (rhv2)′ = (rhv)′v+rhvv ′ = rhvv ′

by the product rule and (1).
Second, note that that the second term is ( 1

2 g rh2)′ = 1
2 g h2 + g rhh′

which partially cancels the right hand side of (2), and we are left with
rhvv ′+ g rhh′ = 0. After dividing by rh, we are left with

( 1
2 v2 + g h)′ = 0 (3)

which really is Bernoulli’s law applied to a streamline either following
the surface or the bottom of the flow.

The two equations (1) and (3) can be integrated to yield

rhv = M , v2 +2g h = E (4)
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Hydraulic jump 2

for constants M (the total volumetric flow, divided by 2π) and E (twice
the energy per unit mass of the flow). From the first equation we get h =
M/(r v) which we substitute into the second, getting v2 +2g M/(r v) = E .
Perhaps more usefully, we write this as

2g M

r
= (E − v2)v, (5)

and plot the result as follows, with r along the horisontal axis and v
on the vertical axis. (I have arbitrarily plotted the graph with E = 2 and
2g M = 1. Obviously, the general graph is a rescaled version of this one.)
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We note that there are two solutions for a given (big enough) r : We might
call the upper one the fast solution and the lower one the slow solution.
It seems reasonable to expect that fast solution to be appropriate inside,
and the slow one outside the hydraulic jump.

Differentiation the righthand side of (5) wrt v we see that the turning
point is at v = ( 1

3 E)1/2.
It is useful to express this in terms of the Froude number

Fr = v

(g h)1/2
.

Recall that (g h)1/2 is the wave speed for shallow water, so that Fr > 1
means the water flow is faster than the wave speed. Using (4) first, and
then (5) to eliminate r we get

Fr2 = v2

g h
= r v3

g M
= 2v3

(E − v2)v
= 2v2

E − v2

so that

Fr > 1 ⇔ 2v2 > E − v2 ⇔ v > ( 1
3 E)1/2,

which shows that Fr > 1 on the upper branch of the curve and Fr < 1 on
the lower branch.
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3 Hydraulic jump

The jump

We return now to the original equations on integral form. Again, looking
for a stationary jump at r we drop the time differentiated terms and let
r1 → r from below and r2 → r from the right. The integral vansishes in
the limit, and we end up with the two jump conditions (after dividing by
the common factor r)

h+v+ = h−v−, h+v2
++ 1

2 g h2
+ = h−v2

−+ 1
2 g h2

− (6)

One way to solve this is the following trick: Note that

hv2 + 1
2 g h2

(hv)4/3
= v2/3

h1/3
+ 1

2 g
h2/3

v4/3
= g 1/3(Fr2/3 + 1

2 Fr−4/3)

(where we used v2/h = g Fr2). So, in the second equation of (6) we di-
vide the two sides by the 4/3rd power of the respective sides of the first
equation, which yields

Fr2/3
+ + 1

2 Fr−4/3
+ = Fr2/3

− + 1
2 Fr−4/3

− .

However Fr2/3 + 1
2 Fr−4/3 decreases from ∞ to 3

2 for Fr ∈ (0,1], and in-
creases again to ∞ for Fr ∈ [1,∞). Thus to each Fr− ∈ (1,∞) there corre-
sponds a unique solution Fr+ ∈ (0,1), In other words, there is a possible
jump from a fast flow to a slow one. (The equations also admit a jump
from a slow flow to a fast one, but we don’t believe in the physical possi-
bility of such a flow.)

Energy loss. The quantity e = 1
2 v2 + g h is the total specific energy of a

fluid particle, is preserved along a streamline according to Bernoulli’s
law. However, it will not be preserved across the hydraulic jump. The
reason is that the region of the jump is a very turbulent region in which
liquids with very different speeds collide, so energy is lost there.

To quantify this we use a trick similar to the one above, noting that

1
2 v2 + g h

(vh)2/3
= g 2/3( 1

2 Fr4/3 +Fr−2/3).

The right hand side will change across the jump, and since the denomi-
nator on the left hand side does not change, the numerator must.

Experimenting a bit with Maple leads me to believe that

( 1
2 Fr4/3 +Fr−2/3)− (Fr2/3 + 1

2 Fr−4/3)
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is a strictly increasing function of Fr. Therefore, since Fr2/3 + 1
2 Fr−4/3 is

preserved across the jump, the energy will decrease (or increase) across
the jump if and only if Fr decreases (or increases).

Indeed, with the shorthand notation x = Fr2/3 we get

d

dx

(
( 1

2 x2 +x−1)− (x + 1
2 x−2)

)=−x +x−2 +1−x−3

= x−3(x4 −x3 −x +1) = x3(x −1)(x3 −1) > 0

when x > 0, x 6= 1.
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