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As an introduction, consider the example of the damped bead on a rotating
hoop: Consider a bead sliding on a circular hoop made from some wire.
Assuming a friction force proportional to the speed of the bead, it satisfies
an equation of motion exactly like the circular pendulum: θ̈+µθ̇+ sinθ = 0,
after scaling.

But now we set the hoop spinning around a vertical axis. If we consider the
bead in a coordinate system that rotates with the hoop, we will see two new
forces: A centrifugal force and a Coriolis force. The latter will act in a direction
perpendicular to the hoop, so we can ignore it (though in practice, it could
affect the friction of the bead). The modified equation, with the centrifugal
force added, will be of the form

θ̈+µθ̇+ sinθ =Ω2 sinθcosθ

where Ω ≥ 0 is the (scaled!) angular velocity of the hoop around its vertical
axis. This is of course equivalent to the dynamical system

θ̇ =ω,

ω̇=−µω− sinθ+Ω2 sinθcosθ.

The equilibrium points of this are easy to find: They are given by

ω= 0 and (sinθ = 0 orΩ2 cosθ = 1).

The linearization at an equilibrium is associated with a matrix of partial
derivatives of the righthand side of the system:(

0 1
−cosθ+Ω2(cos2θ− sin2θ) −µ

)
with the trace τ = −µ and the determinant δ = cosθ−Ω2(cos2θ− sin2θ). It’s
slightly more useful to write δ= cosθ−Ω2(2cos2θ−1).

For the bead at the top of the hoop (θ = π), we find cosθ = −1, and
therefore δ = −(1 +Ω2) < 0. Thus this equilibrium point is always a saddle
point.
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A very short introduction to bifurcations 2

The bottom of the hoop (θ = 0) is more interesting. We find cosθ = 1, so
δ= 1−Ω2. If 0 ≤Ω< 1 then δ> 0, and the equilibrium is stable (since τ< 0).
But whenΩ> 1, the equilibrium is once more a saddle, i.e., it is unstable.

Finally, let us investigate the equilibrium points given by ω = 0 and
Ω2 cosθ = 1. Clearly, we must haveΩ≥ 1. With cosθ =Ω−2 we get

δ=Ω−2 −Ω2(2Ω−4 −1) = 1−Ω−2 > 0,

so these equilibrium points are also stable (again, since τ< 0).

We can sum up our findings in a diagram. Since ω = 0 in all equilibrium
points, and the stability (or not) does not depend on µ (so long as µ > 0), we
only need to include θandΩ in the diagram.

A solid curve corresponds to stable equilibrium points, wheras a dashed
curve corresponds to unstable equilibrium points.

The “double point” (Ω,θ) = (1,0) on the diagram is a classic pitchfork
bifurcation. As Ω moves past the critical point, a single stable equilibrium
splits, or bifurcates, into a single unstable equilibrium and two stable ones.1

Figure 1: Bifurcation diagram for the bead on a rotating hoop

1Since the word “bifurcation” clearly indicates a splitting in two parts, maybe the pitchfork
should be called a trifurcation. But the common usage is to say bifurcation, no matter what.
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3 A very short introduction to bifurcations

One dimensional dynamical systems and their bifurcations

A systematic study of two dimensional bifurcations is unfortunately beyond
us here, so we limit ourselves to one dimension.

First, we note that the qualitative study of a single differential equation
ẋ = f (x) is almost embarrasingly simple: Just note that ẋ > 0 (the system
moves to the right) when f (x) > 0, whereas ẋ < 0 (the system moves to the
left) when f (x) < 0.

So clearly, an equilibrium point ( f (x0) = 0) is asymptotically stable is
f (x) > 0 for x to the left and f (x) < 0 to the right of x0, which is of course
the case when f ′(x0) < 0.

Similarly, the equilibrium point is unstable is f (x) < 0 for x to the left or
f (x) > 0 to the right of x0, which is of definitely the case (both sides) when
f ′(x0) > 0.

The conditions on the derivatives are of course just the usual conditions
on the eigenvalues of the 1×1 Jacobian matrix of f .

So we now introduce a parameter into our dynamical system, and write it as

ẋ = f (x,µ)

where the unknown x is a scalar function, and µ is a scalar parameter.
As a specific example, consider the case

ẋ = f (x,µ) =−(µ−x2 +x3)(µ+4x).

The set of equilibrium points can be plotted in the (µ, x) plane2 as the union
of the two curves µ= x2 −x3 and µ=−4x.

To work out the stability, just figure out the sign of f in one region: For
example f (x,µ) < 0 if x À 1 and u > 0. Then remember that f (x,µ) changes
sign every time (µ, x) crosses one of the two curves in the diagram. So now we
know the sign of f in every region of the plane.

It is now easy to deduce the stability properties of any point on a curve
where f = 0. The bifurcation diagram in figure 2 shows all the most common
behaviours of one-dimensional bifurcaton problems.

At (µ, x) = (−8,2) and at (µ, x) = (4,−1) you see double points.
At (µ, x) = (0,0) you see a pitchfork. It is in fact a double point too.
All the other points on the set f = 0 are regular points.
At (µ, x) = ( 4

27 , 2
3 ) you see a regular turning point.

2Perversely, it is common the draw theµ axis horizontally and the x axis vertically, even though
we write f (x,µ) and not f (µ, x).
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Figure 2: Bifurcation diagram for a one-dimensional system

Let us try to be a bit more systematic. We’re assuming that f is sufficiently
smooth: In the first parts of the analysis C 1 is enough, but later on we want it
to be C 2.

It is a consequence of the implicit function theorem that, near a point on
f = 0 where fµ 6= 0 (we write fx and fµ for the partial derivatives of f ), the
set f = 0 can be seen as a curve of the form µ = g (x) in a neighbourhood
of the given point. Here g is itself a C 1 function. It satisfies f

(
x, g (x)

) = 0.
Differentiating this relation, we get fx + fµ · g ′(x) = 0, or

(1) g ′(x) =− fx (x,µ)

fµ(x,µ)
, µ= g (x).

Similarly, near points where f = 0 and fx 6= 0, we can locally see f = 0 as a
curve x = h(µ).

Points on the set f = 0 where fx 6= 0 or fµ 6= 0 are called regular points. We
have seen that the set f = 0 behaves like a curve near any regular point.

A regular point can be a turning point if fx = 0 there. From (1) we see that
this condition means that the curve f = 0 is parallel to the x axis, i.e., vertical
the way we have drawn the diagram. All that is required in addition to make it
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5 A very short introduction to bifurcations

a turning point is a bit of curvature in the curve itself. We could work this out
in terms of the partial derivatives of f , but we’ll leave that alone.

A singular point is one where f = 0 and fx = fµ = 0 as well. From first year
calculus we know that this means we have a critical point of f : It could be a
local maximum or minimum (if fxx fµµ− f 2

xµ > 0), or it could be a saddle point

(if fxx fµµ− f 2
xµ < 0). If fxx fµµ− f 2

xµ = 0 then further analysis is needed.
A local maximum or minimum at a point where f = 0 is not very interesting

from a dynamical systems perspective.
A saddle point is very different, though: If fxx fµµ− f 2

xµ < 0 at a point where
f = 0 then we call that point a double point of the system.

Near a double point, the set f = 0 is the union of two curves that cross each
other transversally.3

Just like a regular point just might be a turning point, so can a double point
possibly be a pitchfork, if one of the two curves happens to be vertical and
have a nonzero curvature. Otherwise, the behaviour of a double point is just
like we’ve seen in the example: As the bifurcation parameter µ moves past
the critical value, two equilibrium points – one stable and one unstable –
approach each other and then cross each other’s paths, interchanging their
stability properties in the process.

A singular point where fxx fµµ− f 2
xµ = 0 defies any simple general analysis,

just like in the study of calculus. In particular cases, however, these cases may
not be too hard to work out by hand.

Example: The stirred tank reactor. Imagine substance (a “reactant”) dis-
solved in a liquid. The reactant undergoes a reaction which destroys it (and
converts it into something else) at a rate proportional to the reactant concen-
tration c. Many such reactions are strongly temperature dependent. Accord-
ing to a common model (by Arrhenius), the rate is also proportional to e−A/T

for some constant A, where T is absolute temperature. Thus, if nothing else
happens, c would satisfy a differential equation on the form ċ =−kce−A/T .

Many interesting reactions are also exothermal, which means they release
heat in proportion to the reaction rate. In the above scenario, heat will be
released at a rate hkce−A/T , so that, if no heat escapes, the temperature will
satisfy the eqation C Ṫ = hkce−A/T (where C is the specific heat capacity of
the solvent).

These two equations on their own indicate a reaction that goes slowly to
begin with, then speeds up as the solvent heats up. This in turn speeds up the

3In this context, transversally means “not tangentially”.
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reaction, which will go faster and faster until most of the reactant has been
used up.

The stirred tank reactor consists of a tank of a fixed volume V , into which
we feed a constant stream of solvent with the reactant in it, and also extract
solvent at the same rate, keeping the tank full at all times. Some mechanism
is included for stirring the contents, so they are always properly mixed.

If the incoming fluid has temperature T0 and reactant concentration c0,
and the fluid flows at a rate q , the resulting equations are

V ċ = qc0 −qc −V kce−A/T ,

V C Ṫ = qC T0 −qC T +V hkce−A/T .

We perform a quick’n’dirty nondimensionalization on this, using the time
scale (V /q) implied by the mixing process, the concentration scale c0 (makes
excellent sense), and the temperature scale T0 (makes less sense, but we do
it anyway). We also shift the origin of the temperature scale, writing T =
T0(u + 1) where u is the dimensionless temperature. The resulting scaled
equations (after dropping the primes) are

ċ = 1− c − c

µ
e−α/(u+1),

u̇ =−u + βc

µ
e−α/(u+1).

From this we see that we can get an equation without the common exponen-
tial factor: u̇ +βċ =β− (u +βc), which is an ordinary differential equation for
v = u +βc. With this equation, and after replacing βc by v −u in the u equa-
tion, we are left with the somewhat simpler system

u̇ =−u + v −u

µ
e−α/(u+1),

v̇ =β− v.

We are presently only interested in investigating equilibrium points and their
stability. At an equilibrium, v = β, and the second equation above certainly
implies that this part of the equilibrium is very stable indeed. So for the
stability analysis, we can just put v =β and work with the single equation

u̇ =−u + β−u

µ
e−α/(u+1).
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7 A very short introduction to bifurcations

Any equilibrium of this equation must satisfy

µu = (β−u)e−α/(u+1).

The righthand side of this equation is sketched in figure 3, and the resulting
bifurcation diagram is sketched in figure 4. The bifurcation diagram has two
regular turning points, with a stable branch at each end and an unstable
branch in the middle. During adjustments of the process control parameter
(flow rate) µ, the process may “fall off” one stable branch onto the other,
resulting in a dramatic change in operating conditions.

Figure 3: A helpful diagram Figure 4: Bifurcation diagram

The above conclusions are not universally valid, however. The lines from the origin
in figure 3 correspond to different constant values for µ. The fact that some of them
cross the curve in three places, and some just once, corresponds to the fact that u is
sometimes triple-valued, and sometimes single-valued, as a function of µ as indicated
in figure 4.

One can pick the parameters α and β so that this is not so, however. With a little
help from Maple we find that

d2

du2
(β−u)e−α/(u+1) =ααβ−2−2β− (2+2β+α)u

(u +1)4
e−α/(u+1)

which is negative for u larger than some critical value, and positive for smaller u. Thus
the the curve in figure 3 will have the general convexity properties shown, or else µu
will be an everywhere concave function of u for u ∈ [0,β]. This is certainly possible,
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and then the bifurcation diagram will have no turning points, and all equilibrium
points are stable.

The Hopf bifurcation

The prototype for a Hopf bifurcation is the system

ẋ =−y +x(µ−x2 − y2),

ẏ = x + y(µ−x2 − y2).

It has only one equilibrium point: The origin. (If ẋ = 0 and ẏ = 0, multiply the
first equation by y and the second by x and subtract.) The linearization at the
origin is associated with the matrix(

µ −1
1 µ

)
with trace 2µ and determinant µ2 +1 > 0: So the origin is stable for µ> 0 and
unstable for µ< 0. In fact, the characteristic equation is λ2 −2µλ+µ2 +1 = 0,
with roots λ=µ± i .

But this change of stability is not the only thing that happens when µ

passes through 0.
If we introduce polar coordinates (x, y) = (r cosθ,r sinθ) then this system

becomes
ṙ = r (µ− r 2), θ̇ = 1.

We see that r has its own little dynamical system which undergoes a pitchfork
bifurcation asµpasses through 0. The single stable equilibrium at r = 0 (when
µ < 0) becomes an unstable equilibrium at r = 0 and two stable equilibria at
r =±pµ when µ> 0 (but of course, we should ignore the negative r ).

That means the full system has a stable limit cycle at x2 + y2 = µ when µ>
0. The general Hopf bifurcation shows this behaviour: A stable equilibrium
becomes an unstable equilibrium surrounded by a stable cycle. (Or the
other way around, with the words “stable” and “unstable” interchanged
throughout.)

The two complex conjugate roots passing through the imaginary axis
while staying away from the linear axis is a typical characteristic of the
Hopf bifurcation. But it is not sufficient: The van der Pol system shares this
characteristic, but its behaviour as ε passes through zero is more complicated
than a Hopf bifurcation.
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