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Abstract. These are supplementary notes for a course on dynamical systems. The notes were
first made for the course in 2007. For 2008, those notes were worked into a single document.

The basic text for the course is D. W. Jordan and P. Smith’s Nonlinear Ordinary Differential
Equations. These notes are only intended to fill in some material that is not in the book, or to
present a different exposition.
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Chapter 1

Well-posedness for ODEs

This chapter is about well-posedness of the initial-value problem for a system of
ordinary differential equations:

x(0) = f(x(0), W
x(0) = a.
Here f: Q — R" is a mapping defined on an open set Q = R”. The initial value a is
supposed to belong to Q, and the unknown function x is to be defined on an open
interval containing ¢ = 0.
By well-posedness of the problem we mean a positive answer to three questions:
(1) Does a solution exist? (2) Is the solution unique? (3) Does the solution depend
continuously on the data (a and the function f)?

Lipschitz continuity

The answer to the question of well-posedness is in general negative. It turns out
that the natural requirement to obtain a well-posed problem is Lipschitz continu-
ity of the righthand side f. The function f is called Lipschitz continuous if there
exists a finite constant L so that

|f)-f|=Lix—yl, foralx,yeQ.

The smallest such constant L is called the Lipschitz constant for f on Q.

Lipschitz continuity is not uncommon. For example, assume that f isa C! func-
tion, by which we mean that its first order partial derivatives exist and are contin-
uous. We write D f for the Jacobian matrix of f:

oh oA
0x) Tt 0xp
Df=1: -
0fn Ofn

0x) Tt 0xpy



Then, if the whole line segment [x, y] with end points x and y lies within Q, we can
write

1 d 1
f(y)—f(x)z/o af((1—t)x+ty)dt=f0 Df(Q-tx+ty)dt-(y—x)

with the result that, if | D f (2) | < L for all z, (where the norm is the operator norm
of the matrix, seen as an operator on R"), then | f(x) - f(y)| < Lix - y|.

If f belongs to C! then f is locally Lipschitz continuous, which means that every
point x € Q has a neighbourhood in which f is Lipschitz continuous. Equivalently,
f is Lipschitz continuous on every compact (i.e., closed and bounded) subset of
its domain.

Uniqueness

1 Theorem. Assume that f is locally Lipschitz continuous. Then (1.1) has at most
one solution on any given interval containing 0.

Proof: Assume that x and y are two solutions of (1.1), and note that

t t
x(t)=a+f0 fx(m)dr, y(t):a+f0 fy)dr.

Put ;
u(t) = fo |fx(@) - f(y@)]dr,

so that |x(2) — y(¢)| = u(2) for ¢ > 0. Further, if f is Lipschitz continuous with Lip-
schitz constant L, then for ¢ > 0 we find

(6 = | F(x(8) = F ()] = L|x(1) - y(0)] < Lu(®)

This implies that e~2?u is non-increasing. But ©(0) = 0, so this implies u(#) = 0 for

t > 0, and therefore also x(t) = y(t). (The same argument holds for negative ¢, by
time reversal: If x(¢) solves (1.1) then %(f) = x(—1) solves a similar problem with
f replaced by — f. So if we have uniqueness forward in time, the same must hold
backward in time.)

The proof as written requires f to be (globally) Lipschitz continuous, but in fact
local Lipschitz continuity is enough: If x and y are two solutions and x (%) = y(f)
for some 1ty then use the above proof, with L being the Lipschitz constant of f
on some neighbourhood of x(#), to conclude x(#) = y(¢) of all ¢ in some neig-
bourhood of fy, and this implies that x(#) = y(¢) for all . We skip the details,
but provide the following hint: Assume that x(#;) # y(#;) for some #; > 0. Put
to =sup{r€ [0, n]: x(¢) = y(¢)}, and immediately arrive at a contradiction. '



Existence

2 Theorem. Assume that f is Lipschitz continuous on the closed ball B = Brla) =
{x: |x—al < r}, where r is some positive number. Let M be the maximum value of
|fl on B, and define T by MT = r. Then (1.1) has a solution defined for |t| < T.

Proof: Note that (1.1) is equivalent with

t
x(1) = a+f f(x@)dr. (1.2)
0

We proceed to find a solution by a procedure known as Picard iteration:

a k:())
£ = t
() a+f Flaa@)dr k=12,...
0

It is easy to prove by induction that xi(¢) € B for t € [T, T]. Working a bit harder
we can show, again by induction, that

MLk—l | t| k
k!
where L is the Lipschitz constant of f on B. For k = 1 the above inequality reduces

to the obvious | fot f(a)dz| < M|t]. And assuming the inequality holds for some £,
compute

| xi(0) = X1 ()| <

t
|Xk41(8) — Xk ()] = ‘fo (f k(@) = f(xp-1 (7)) dr|

t t
< fo | Flee@) - foar ()] di| < | fo L]x() = xi1 (0] d1]
- ‘ft MLk|T|k 4 ‘ B MLk|t|k+l
=l T YT Tk

which finishes the induction part of the proof.
We shall only need the simpler version

)

MLk—l Tk
Xk () = X1 ()] < ———
k!
of the above inequality.! Assuming m < k; < k» we therefore have
ko ) MLk71 Tk
e (D=2, (0] =| ¥ w@-xmam|s Y S
k=ki+1 k=m k!

1We could hardly manage to prove that by induction: The r dependency in the estimate was essen-
tial. But when we use the inequality, we prefer an estimate independent of ¢.



Noting that the final sum here (1) does not depend on ¢, and (2) goes to zero as
m — oo, we conclude first that the sequence (xk(t))})co:1 is a Cauchy sequence, and
hence has a limit x(#), and then that this convergence is uniform, so that x(#) is a
continuous function.

Finally, we let k — oo in the relation x;(f) = a + fotf(xk,l(r))dr to deduce
(1.2). The only slightly nontrivial part of this limit procedure is to show that
Jo fx—1()) dr — [ f(x(1)) d7. To see this, estimate the difference:

t t t
| fo (flxie) - fxx)) di| < fo |f (e @) = fx())|dr < fo Lxe(m) - x(@)] dr — 0

because xx — x uniformly. "

In fact, it is not hard to show that there exists a maximal interval of existence, that
is an open interval I on which (1.1) has a solution, and so I contains any other
open interval with a solution on it. One simply takes I to be the union of all open
intervals J containing 0 so that (1.1) has a solution on J. For any ¢ € I, pick some
J on which there exists a solution y, and define x(#) = y(#). If K is another such
interval, and z is a solution on K, then /N K is yet another interval, so the unique-
ness theorem shows that y = z on J N K. Therefore our definition of x(z) does not
depend on the particular choice of J.

3 Theorem. Let the maximal interval of existence be (a, ), where —oco < a <0 <
B < oco. Write 6 (x) = min{dist(x,0Q), 1/|x|}.

If B < oo, then §(x(1)) — 0 when t — . Similarly, if @ > —oco, then §(x(t)) — 0
when t — a.?

Proof sketch: For any ¢ > 0, write K, = {x € Q: §(x) = ¢}. Then K, is compact.

Assuming f < oo and that the stated conclusion does not hold. That means
there exists some ¢ > 0 and a sequence t; —  with x(#;) € K, for all k.

We may as well assume that € < 2, in which case dist(Kg, R"\K¢/2) < €/2.Let M =
maxcg,, | fl. It is clear that x(#) exists and belongs to M = K/, for any ¢ € [t, t +
e/(2M)], since the solution does not move fast enough to leave M = K/, in time
el2M).

As ty — B, this contradicts the definition of 8 as soon as t +&/(2M) > f. This
contradiction proves the first part.

The second part is proved similarly, or it follows from the first part by time re-
versal. (]

2A more common statement of the theorem says that x(¢) will leave any compact set K c , in the
sense that there is some ' < 8 so that x(#) ¢ K when ' < t < $, and a similar statement at the negative
end.



Continuous dependence on data

Let us consider the dependence on the initial value a. Assume that x solves (1.1),
and that y solves the same system, but with initial data y(0) = b. If f is Lipschitz
continuous with Lipschitz constant L, we have seen that e Lt |x(t) - y(t)| is non-
increasing, so that

|x(6) - y()] = 1| x(0) - y(0)]

(I added a strategic absolute value in the exponent on the righthand side, so the
result can also be used for ¢t < 0.) So the solution depends continuously on the
initial data. (The dependence is locally Lipschitz continuous, but that takes a bit
of effort to prove, so I'll skip it.)

If f is smoother, then we can even conclude that the solution depends on the
initial data in a differentiable way:

Write now x(t, a) for the solution with initial condition a, so that (1.1) can be
written

0x
E - f(x(ty a)))

x0,a)=a

Assuming for a moment that x is differentiable with respect to a, with continuous
partial derivatives, we expect to find

0 0x 0 ox 0

0x
3194~ aa; 01~ oa;) K@) = DI (xta)F o

]

so that dx/daj; itself satisfies a differential equation. It will also satify the initial
condition dx/0a;(0) = e}, where e; is the jth unit vector.

One can turn this argument inside out: Assuming that D f is Lipschitz contin-
uous, the problem z; = Df(x(t, a))zj, z;(0) = e; has a solution, and that solution
can then be shown to be the partial derivative dx/da;. But we shall skip the details.



Odds and ends

Non-autonomous systems. The initial value problem for a non-autonomous sys-
tem

x(1) = f(x(0), 1),
x(0) =a.

can be reduced to the autonomous form (1.1) by writing w(t) = (x(#), t) and solv-
ing the autonomous system

w(t) = (f(w(1),0),
w(0) = (a,0).

This may not be the best way to study non-autonomous systems, but it does show
that the well-posedness results extends to this case.

Continuous dependence on f. Assume that f depends on further parameters b €
R

x(0) = f(x(0),b),

x(0) = a.

A rather silly looking way to solve this is to write w(t) = (x(t), b) and to solve

w(D) = (f(w(n),0),
w(0) =(a,b).

That is, we add the components b to x and add equations saying that those com-
ponents of w are constants (their derivatives are zero).

Note that the b moved from f into the initial conditions. It follows that the so-
lution depends continuously (smoothly, if f is smooth) on b.



The flow

Consider an autonomous system % = f(x). From the well-posedness result we
know that the solution x(#) at a time ¢ is uniquely determined by ¢ and the ini-
tial data x(0) = a. Thus we could write x(#) = ®(t, a) for some function ® of two
variables, but I shall prefer instead a slightly different notation, and write

x(1) = @' (x(0))

if x is a solution which is defined in an interval containing 0 and .
Stated differently, ® is defined by

a t _ t
= @' (@)= [(9' (),

@%a) = a.

The map @ is called the flow of the given system. According to the well-posedness
result, @ is continuous (even Lipschitz). It may not be defined everywhere, since a
solution to the system may go off to infinity or leave the domain of f in finite time.
However, it is not difficult to show that @ is defined in an open subset Dg of Rx D I;
(where Dy is the domain of f), and so that for any a € Dy, the set {r € R: (t,a) €
Do} is an interval containing 0.

The most important property of the flow is called the semigroup property:

q)t1+tz(a) — (lez ((Dt] (d))

whenever the righthand side is defined. To show this, just note that ¢ — ®*%2(a)

and ¢ — @ (®" (a)) are two solutions to the system (autonomy is needed for the

first one), with the same initial data ®* (a) at t = 0, so they are the same solution.
We often write the semigroup property in the shorter form

i+l _ §l: 15
Pt =@l oh,

but it should be noted that ®1*2 may be defined at some point where ® o ®" is
not.

For a simple example, consider the scalar equation X = 1x, where A is a con-
stant. The general solution is of the form x = ae'? for a constant a, and then clearly
x(0) = a, so the flow is given by ®’(a) = ae*!, and the semigroup property corre-
sponds to the familiar addition formula for the exponential function. (Incidentally,
this is why I like to put the ¢ in @' in the exponent position.)

As a further example, consider the scalar equation x = x?. Separation of vari-
ables yields x = 1/(C — t) for the general solution. Initial data x(0) = a forces
C =1/a, so we can write the flow as

Ol (a)=al(l-ap), at<1.



The semigroup property is less obvious but still easily verified. This time, however,
©2(®" (a)) can well be undefined while @12 (a) is defined: For a trivial example,

picka=1,4 =1, tzz—%.

The flow encodes everything about the dynamical system. For example, f itself
can be recovered from the flow via the simple rule

_ 0 t
f(x)—EQD (x) o

In fact, it is possible to characterize precisely those maps ® which are flows of a
dynamical system: All that is required is that ® and 0®/d¢ be (locally) Lipschitz,
and that they have the semigroup property (including ®°(x) = x).

Accordingly, some authors consider the flow to be the dynamical system. This
is a point of view that fits better with the notion of a discrete dynamical system,
which is typically defined by iterating a map f: R” — R". Writing f” for the n-fold
composition fo fo---o f, we again recognize the semigroup property f™+*" =
f™ o f™, thus making the analogy between the two kinds of dynamical system
clear.



Chapter 2

Equilibria for planar systems

This note is about the classification of equilibrium points of nonlinear systems in
the plane. We shall deal only with those cases which can be (mostly) decided on
the basis of the linearization of the systems around the equilibrium.

But first, a few generalities that apply in any dimension: Consider a system of
the form

2= f(2)

where the unknown function z is vector valued: z(t) € R".

If zg is an equilibrium point, i.e., if f(zp) = 0, then the change of variables
w = z — zp changes the system into one with an equilibrium at 0. So we lose no
generality in assuming that zy = 0, and shall do so through this note.

So assume now that f(0) =0, and also that f is differentiable at 0: Thus

f(z2)=Az+o(r), z—0,

where A is an n x n matrix, called the Jacobian matrix or the derivative of f at 0.!
We write d f(0) or even f’(0) for this matrix.

In order to see what information can be gained from the Jacobian matrix, it is
useful to reduce attention to a handful of normal forms. If we perform a linear
change of variables:

z=Vuw,
where V is an invertible matrix, the system is transformed into the form Vi =
f(Vw), or
w=gw), wheregw)=V""'f(Vw).
Since g(w) = V7 If(Vw) = VI (OVw+o(Vw)) = VI (0O Vw+o(wl), we
must have
go=v1'fov

In other words, g’ (0) is similar to f'(0).

1 Actually, I prefer to think of it as a linear map R” — R”.



Normal forms of equilibria for planar systems

It is a fundamental result of linear algebra that every real 2 x 2 matrix is similar to
one of the following normal forms:

Two distinct, real eigenvalues:

A0

0 A
These give rise to the nodes (111, > 0) and saddle points (111, < 0). The degener-
ate cases (111, = 0) require more detailed analysis and will be skipped here.

Two complex eigenvalues o + iw, with o,w € Rand w # 0:

o -w

w o
These give rise to foci [singular: focus] when o # 0. The cases where o = 0 (the
linearization is a center) require more detailed analysis

One real eigenvalue (two possibilities):
Al A0
0 2 (VI

These are borderline cases between the nodes and the foci.

Nodes

We consider a planar system of the form
r=hx+g(xy), g(x,y) = o(r),
y=22y+h(x,y), h(x,y) = o(r),

where the “little-oh” notation refers to the limit as r = v/x2 + y> — 0. We must also
assume that g and & are sufficiently regular that the existence and uniqueness
theorems hold: C! is the usual assumption, but Lipschitz continuity is sufficient
in the first part of the analysis.

To investigate stability of the system, use polar coordinates:

c+yy Ax®+Aay? D +yh(xy)  Mx? + )P
P XEHYY X+ Ayt 4 xg(xy) +yhix,y) _ 1err 2 o,

r r

First, assuming A < A, < 0 we conclude

F<lr+o(r)<Ay+e)r



for any € and r small enough.? Thus (ensure A, + £ < 0) r — 0 exponentially as
t — oo, if the starting value is small enough. This is the stable case.
But we can say more: We also find

. XY—YyX Aox(y+h(x, y)) = Ary(x+ g, )

Xy
0=—""7 p = 2= M) —5 +o(D),

and using xy = rcos@ - rsinf = %rsinze,
6 =2(A2—A1)sin20 + o(1).

If A1 < A2 <0 and r is small enough, the final o(1) term will be small enough so
that @ must have the same sign as sin 26, except inside four narrow sectors around
the axes, as indicated in figure 2.1.

Yy

Figure 2.1: An attractive node

Outside the shaded sectors, the movement must be roughly as indicated, in the
sense that 7 < 0 and the sign of § must be as shown by the arrows.

In particular, any trajectory that does not stay within the horizontal sectors
must end up inside the vertical ones. (For example, looking in the first quadrant
but outside the shaded sectors, we have a definite lower positive bound on 6, so
the trajectory must cross into the sector around the y axis in a finite time.)

By considering ever smaller scales, we can redraw the figure with ever narrower
shaded sectors. So we conclude that the majority of trajectories will approach the

2The precise statement: Given any & > 0 there is some & > 0 so that the inequality holds whenever
r<é.



origin from the vertical direction, but it is conceivable that some trajectories will
do so horizontally.

In fact, some of them must do so, as we show next.

Consider initial data (xp, yo) with xo > 0 fixed and small, while y, varies (i.e.,
on the thin vertical line indicated in the righthand side of Figure 2.1). For large
enough (but still small) ||, the initial point will be outside the shaded sector, and
so the solution will remain outside the sector. For others, the solution will escape
the sector either upwards or downwards. Now, by the continuous dependence of
solutions with respect to initial data, the set of y, for which the solution escapes
upwards will be an open set A, and the set for which it escapes downwards will
be another open set B. In fact, these sets will be intervals, since solution curves
cannot cross, so any solution trapped above one that escapes upwards will itself
do so, and similarly for the downward escaping ones. So there must be at least
one yp that belongs to neither A nor B, and the trajectory through this point must
approach the origin while staying inside the sector (since there is nowhere else for
it to go).

If we assume a bit more regularity of the righthand side of the equation, one
can show that only one curve from each side will approach the origin horizontally,
but we shall not prove it here.

If both eigenvalues are positive rather than negative, we get the described be-
haviour of solutions, but this time as t — —oo. There is no need to repeat the anal-
ysis: Just apply the results of the above reasoning to the reversed system.

As an alternative to polar coordinates, we might note that the trajectories satisfy

fﬂ:/l2+h(x,y)/y_)@ asr—0
ydax Ai+gxnix M

so long as they stay out of the shaded sectors around the axes. Thus the trajectory satisfies
a differential equation of the form

dy y

dx @) X

with a(x) — vy = A2/11 when x — 0. Note that 0 < y < 1. That equation implies
dx
In|y| = fa(x)— ~vIn|x| asx—0
X

so that y behaves like C|x|? for small x, and (x, y) does not stay out of the sector around the
y axis after all.

If g and h are C! functions, and if y1 (x) and y» (x) are two trajectories that both approach
the origin along the x axis, then with a bit more effort we can show that z = y, — y; satisfies
an equation of the form

Z
a = ﬁ(x);



with B(x) — y as above (subtract the two equations for y» and y; and manipulate the result
for a while), and again this leads to a contradiction. Thus only one trajectory approaches
the origin from each side of the x axis.

Coinciding eigenvalues.

x=Ax+ey+gx,y), gx,y)=o(r),
y=Ay+h(x7y), h(x,y) = o(r),

with A # 0. The case € = 0 is the case where the eigenspace corresponding to the
single eigenvalue is two-dimensional, while the case € # 0 corresponds to a Jordan
normal form with a one-dimensional eigenspace. The latter is usually specified
with € = 1, but replacing y by €y yields the above form.

We shall insist on having 0 < € < |A|: For then

. xi+yy Arf+exy
r = = +
r

o(r).

Noting as before that xy = %rz sin20, we find |exy| < %rz < %I)LI, so that 7 has the
same sign as A when r is small enough, and solutions tend to 0 exponentially as
t—oo(ifA<0)ort— —oco (if A > 0).

In other words, the question of stability is settled just as previously. What hap-
pens in the angular (6) direction is far less clear-cut.

Saddles

Next, we consider the case

x=-Ax+gx,y), gx,y)=o0(r),
y=uy+hx,y), h(x,y) = o(r),

where A,u > 0 and the “little-oh” notation again refers to the limit as r =
X2+ y2—0.

Polar coordinates are not quite as useful in this case, but we can instead note
that x and x have opposite signs, so long as r is small and we stay outside the thin
sectors around the y axis in Figure 2.2.

In detail: Let € > 0. If r is small enough then |g(x, y)| < er. Whenever er < A|x],
then x and x must indeed have opposite signs. Squaring the inequality we get
£2(x% + y?) < A?x?, and assuming ¢ < A, that is true if VA2 — £2 |x| < €] y|.

A similar analysis shows that y and y have the same signs outside the small
sectors around the x axis.



Figure 2.2: A saddle point

So outside the four sectors, all solutions must move in the general direction
indicated by the arrows.

In particular, any solution that strays outside the two horizontal sectors will
escape out of the neighbourhood in the vertical direction.

Repeating the argument from the node case, considering initial data on the
small vertical line segment across the positive x axis, we find that some trajec-
tory will approach the origin horizontally from the right (and similarly, one from
the left).

Once more, assuming a bit more regularity of the system we can show that there
is only one such trajectory from each side.

Assume the righthand side of the system is C'. Thus g and h are C! functions.
Since both are o(r), the first order partial derivatives of each are 0 at (0,0), and it
follows that d,g = dg/0y = o(1) as r — 0. Applying the mean value formula in the
y direction, we conclude from this that g(x, y») = g(x, y1) + o(1)(y2 — ¥1), and the
similar formula for A.

Now assume two different trajectories approach the origin from the right half
plane. Write them in the form y;(x) for i = 1,2, let z = y» — y1, and subtract the two
equations

dyi _ pyi+h(x,yi)

= . i=1,2
dx -Ax+gx,y) !



and get (after multiplying by the common denominator)

(=Ax+gx, y1) (=Ax+ g(x, y2))

= (uy2 + h(x, y2))(=Ax + g(x, y1)) — (uy1 + h(x, 1) (=Ax + g(x, y2))
=(-Aux+o(r)z

where we have substituted g(x, y») = g(x, y1)+o(1)z and h(x, y») = h(x, y1)+0(1)z
and noticed plenty of cancellation in the last line. As we have seen, the trajectories
y; must approach the origin in a sector, so the o(r) term above can be written o(x),
and we conclude that, if y; < y, then dz/dx < 0. Thus z increases as x — 0 from
above, but this is impossible if both orbits are to stay within a sector.

Taken together with the origin itself, the two curves approaching the origin
from each side form what is known as the stable curve of the equilibrium point.
This curve is tangential with the x axis. All initial data near the equilibrium point
and not on the stable curve, must escape out of small neighbourhoods.

Now we can reverse time and repeat the argument. In the original system, we
conclude that there is an unstable curve which is tangent to the y axis, along which
solutions tend to the equilibrium points as ¢ — —oo. And all other initial data pro-
duces solutions that escape the neighbourhood when time runs backwards.

Foci

Finally, we have saved the easiest case for last: systems on the form

X=ox—wy+gxy), g(x, y) = o(r),
y=wx+oy+h(x,y), h(x,y) = o(r),

where o # 0. In polar coordinates we get
F=or+o(r), 0=w+o(l), asr—0.

The first equation shows that if o < 0 then r — 0 exponentially fast as t — oo, and
the equilibrium is stable.

Similarly, if o > 0 then r — 0 exponentially fast as # — —oo, and the equilibrium
is unstable.

In either case, 6 grows approximately at a linear rate as r — 0, so the solution
spirals around the equilibrium point an infinite number of times.

This behaviour defines a focus in general.

Note that in the degenerate case o = 0 the linearized system is a center, but
anything might happen to the nonlinear system: It could be a center or a focus,
or there could be an infinite sequence of closed trajectories around the origin,
typically with spirals in between.



Summary

Via a linear change of coordinates the above analysis applies to equilibrium points
of any C! planar system, so long as the eigenvalues of the Jacobian matrix are dis-
tinct and have nonzero real part.

If both eigenvalues are real and of the same sign, we get a node. By definition,
a node is either stable or unstable: In the stable case, all nearby trajectories ap-
proach the equilibrium as ¢ — oo. In the ustable case, they approach the equilib-
rium as ¢ — —oo. And in either case, they all do so tangentially to a common line
through the equilibrium point, with just two exceptions, which approach from
opposite sides tangentially to a different line. The two lines are parallel to the
eigenspaces of the Jacobian matrix.

The node is stable if the eigenvalues are negative, and unstable if they are pos-
itive. This result holds even if the eigenvalues are equal, but in the latter case be-
haviour may be like either a node or a focus, and more detailed analysis is needed.

If both eigenvalues are real and of opposite signs, we get a saddle point.
Through the saddle point are two curves, the stable curve which is tangent to
the eigenspace corresponding to the negative eigenvalue, and the unstable curve
which is tangent to the eigenspace corresponding to the positive eigenvalue. The
stable and unstable curves are each composed of two trajectories and the equi-
librium point itself. The two trajectories on the stable curve approach the equilib-
rium point as ¢ — oo, and those on the unstable curve approach the equilibrium
point as t — —oo.

Finally, in the case of non-real eigenvalues, the two eigenvalues will be com-
plex conjugates of each other, and we get a focus: Solutions will spiral towards the
equilibrium either as t — oo (the stable case) or t — —oo (the unstable case).



Chapter 3

Linearization at equilibrium points

This chapter is about the behaviour of a nonlinear autonomous system % = f(x)
(where x(t) € R") near an equilibrium point xq (i.e., f(x) = 0).

The Hartman-Grobman theorem states that the system behaves “just like” its
linearization near the equilibrium point. However, this theorem requires of the
linearization that no eigenvalues have real part zero: Thus it is not the appropriate
tool for deciding instability where some eigenvalue has a positive real part, since
other eigenvalues may have a real part equal to zero in general. The Hartman-
Grobman theorem will decide stability when all eigenvalues have negative real
parts, but this is sort of a sledgehammer approach where simpler tools will do the
job.

We will first develop and use these simpler tools, then return to the Hartman—
Grobman theorem and its more appropriate uses later.

Stability and instability of equilibrium points

In this section, we use suitable Liapunov functions to prove the standard results on
stability and instability of equilibria based on the eigenvalues of the linearization.
We consider estimates for the linear part first.

After a change of variables, a linear system X = Ax can be written on the form
1 = Ju, where J is a matrix on Jordan normal form: I assume that you know what
this means, but remind you of the basic Jordan building block:

A1 0 0 ... 0
0 A 1 0 .. 0
Aren=|0 0 : 3.1)
0 .. .. 0 A 1
0 0 A

where N is the matrix with 1 just above the main diagonal, and zeroes elsewhere.
For our purposes, it is useful to note that this is similar to a matrix A + e N, where



each 1 above the diagonal is replaced by an &. To be more precise, D~} (Al + N)D =
AI+eN where D is the diagonal matrix with 1, ¢, €?,...on the diagonal.
The reason this is interesting is the estimate

A-a)uPP <u"AI+eN)u< A +e)|ul? (3.2)

for any vector u. It follows via a simple calculation from Ut Nu| = |ujuy + upus +
-+-] < |u|?, which in turn comes from the Cauchy-Schwarz inequality.

Now, I lied a bit above, for there are complex eigenvalues to be considered as
well. To make a long story short, complex eigenvalues come in mutually conjugate
pairs A = 0 + iw where o,w € R and w # 0. These can give rise to Jordan blocks
almost like (3.2), except each A must be replaced by a 2 x 2matrix

o -w

w o
and each 1 above the diagonal by a 2 x 2 identity matrix. But then we can perform
the same rescaling trick as before, essentially replacing each of these identity ma-
trices by € times the identity, and we obtain an estimate just like (3.2), but with

o =Re A replacing A in the upper and lower bounds.
All this handwaving amounts to a proof of the following:

4Lemma. If A is a real, quadratic matrix, and each eigenvalue A of A satisfies
a <Rel < B, then for any £ > 0, A is similar to a matrix A satisfying

(@a—o)ul® <u'Aus< (B+e)ul?
for each vector u.

We are now in a position to show the stability result:

5 Proposition. Let x be an equilibrium point of X = f(x), where f is a C' vector
field. If Re A < 0 for each eigenvalue of the Jacobian matrix of f at xy, the equilib-
rium is asymptotically stable.

Proof: We may assume xy = 0 without loss of generality (after all, it’s just a change
of variables). So the system is of the form

X =f(x)=Ax+o(x]).

Now the Jacobian A of f at 0 has only a finite number of eigenvalues, all of which
have negative real part — so there is some € > 0 with Re A < —2¢ for each eigenvalue



A. By Lemma 4, we can perform a further linear change of variables so that the
system takes the form
u=Au+o(ul,

and where uT Au < —¢|ul? for all u.
Consider the function V(u) = 3|ul*. Then

V=uu=u"Au+o(u® < —¢lul’+o(ul®>) <0

when |u] is small enough, so V is a strong Liapunov function, and 0 is indeed
asymptotically stable. 1
We take a moment for a couple digressions, just because they are easy conse-
quences of Lemma 4.

First, however, we state and prove a lemma. Note that we could have used this
at the end of the proof above, rather than referring to Liapunov theory.

6 Lemma. (“Gronwall light”) Assume u is a differentiable function, v is continu-
ous, and it < uv for t > 0. Then

t
u(t) < u(0) expf v(s)ds fort=0.
0

Proof: Define V(f) = ] v(s)ds. Then d(e”Vu) = ™" (11— uv) <0, so e”V u is non-
decreasing, and in particular e™V @ u (1) < e=V @ 5(0) = u(0). '
The first digression is a proof of the following theorem, from chapter 8.11 of the
book.

7 Theorem. Consider the system
X=Ax+h(x,1t)

in which A is an n x n matrix all of whose eigenvalues have negative real part, and
where
h(x,t) =o0(x|) uniformlyint fort=0.

Then the zero solution is asymptotically stable.

Proof: According to Lemma 4, by a suitable linear change of variables (and
reusing the old names for the new variables) we can arrange things so that

xTAx < —2:3|x|2

for all x € R", where € > 0. Furthermore, the assumption on & means that there is
some 0 > 0 so that

|h(x, )] < €lx| whenever |x| <6 and t = 0.



Whenever x is a solution to the system and |x(#)| < §, then, by the above two in-
equalities and the Cauchy-Schwarz inequality,

d
%lez =2x % =2xTAx+ 2xTh(x, 1) < —delx)? +2¢|x]? = —2¢|x|?

Thus | x|? decays exponentially to zero as t — oco. '

8 Proposition. Let A be a constant nx n matrix whose eigenvalues satisfyRe A <0,
and let B be a matrix valued function on [0,00) so that [;°||B(t)|| dt < co. Then the
zero solution of X = (A + B(t))x is asymptotically stable.

Proof: Neither the hypotheses nor the conclusion are altered by a linear change
of variables. Thus, we may assume without loss of generality that x' Ax < —n|x|
where 1 > 0. Define u(f) = |x(#)|? and note that

u=2x"x=2(x"Ax+x"B(t)x) <2(|B(OIl - ) u.

By “Gronwall light”, we have
t (e
u(t) < u(0) exp2f (B - ds < u©)e™17, M=f IBlldt
0 0

In particular |x(?)| = |x(0)|eM, which proves stability. Furthermore we get | x(t)| —
0 as t — oo, so the stability is asymptotic. ]

9 Lemma. Consider an equilibrium point 0 for a dynamical system 1 = g(u).

Let U be a C!' function so that U(0) = 0, every neighbourhood of 0 contains
some u with U(u) > 0, and assume there is some neighbourhood of 0 so that
whenever u belongs to this neighbourhood and U(u) > 0, then U(u) > 0 as well.
Then 0 is an unstable equilibrium point.

Proof: Let ¢ > 0 be so that whenever |u| < € and U(u) > 0, then U(u) > 0.
Consider any 6 > 0. We shall prove that there exists an orbit starting within the
6-neighbourhood of 0 which must escape the e-neighbourhood of 0.
So pick any uy with |ug| < 6 and U(ug) > 0. Write

K={u:|ul<eand U(u) = U(up)}.

K is closed and bounded, therefore compact. Since U > 0 on K, U has a positive
lower bound on K, say U(u) =y > 0 whenever u € K.

Now let u be the solution with initial value uy. So long as u(¢) € K then U(u)
will grow with a rate at least y, so if u(¢) € K for all ¢ then U (u(#)) will grow without
bound, which is impossible because U is bounded on the compact set K. There-
fore u must leave K, and it can only do that by getting |u| > ¢, i.e., by escaping the
e-neighbourhood as claimed. 1



10 Proposition. Let xy be an equilibrium point of X = f(x), where f is a C' vector
field. IfRe A > 0 for some eigenvalue of the Jacobian matrix of f at xy, the equilib-
rium is unstable.

Proof: As before, assume xy = 0 without loss of generality. So the system is of the
form
X =f(x)=Ax+o(x]).

We may as well assume we have already changed the variables so that A has Jordan
normal form. We can also assume that the Jordan blocks of A appear in decreasing
order of Re A. Lump together all the blocks with the largest value of Re A, and write
u for the corresponding components of x. Write v for the remaining components.
The system now has the form

Uu=Bu+o(/|ul?+|v2),
v=Cuv+o(V|uP+|v?),

where each eigenvalue of B satisfies Re A = § > 0, while each eigenvalue of C satis-
fies Re A < a < B. We can certainly insist that @ >0 as well. Let 0 < € < %(,B -a).

We shall change variables yet again, separately for u and v this time, but we will
reuse the old variable names for u, v, B and C. We shall use Lemma 4 so that, after
the variable change, we find

vIcy < (a+£)|v|2, (ﬁ—s)lul2 < u'Bu.

Let U(u,v) = %(Iul2 —|v[%). We claim that U satisfies the conditions of Lemma 9,
which will finish the proof.

The only property of U that is nontrivial to prove is the one on the sign of U.
Now we find

U=u'u-v'v

=u'Bu-vTCv+o(ul +|v?)

> (B-o)lul® - (a+)|vl* + o(lul® + [v?]),
and when U > 0 we have |u| > |v|, so we find

U>(B-a-2¢8)|ul®+o(u® >0

when |u| is small enough. ]



The Hartman—-Grobman theorem

Consider the autonomous system X = f(x) with an equilibrium point xy. We shall
assume that f is a C! function. The linearization of this system is &z = Au, where
A is the Jacobian matrix of f at xo. The general solution of the linearized system is
u = e’ uy, while that for the nonlinear system is written x = ®’(x,), where @ is the
flow of the system.

The proof of the following theorem is beyond the scope of this text. A relatively
easy proof can be found in [4]. However, the proof is done in a Banach space set-
ting, which might make it less accessible. The theorem was originally proved in-
dependently by Grobman [1] and Hartman [2].

11 Theorem. (Hartman-Grobman) Under the above assumptions, and with the
extra condition that every eigenvalue of A has nonzero real part, there is a ho-
meomorphism H from a neighbourhood S of 0 to a neighbourhood R of xy, which
maps the flow of the linearized system to the flow of the original system, in the
sense that H(e'4up) = ®'(H(ug)) whenever e*4ug € R for all s between 0 and ¢
inclusive.

A homeomorphism is just a continuous map with a continuous inverse.

One weakness of the Hartman-Grobman theorem is the assumption on the
eigenvalues, which cannot be avoided: When some eigenvalues have real part
zero, the detailed behaviour of the system near the equilibrium cannot be derived
from the linearization.

Another weakness of the theorem is that the conclusion is too weak for many
applications: A homeomorphism can map a node to a focus!

For example, consider the function

H(u,v) = (ucoss—vsins, usins+ vcoss), s= —%ln(u2 + VZ).

Assuming that (u, v) satisfy the equations &z = —u and 7 = —v (corresponding to a
stable node), we find § = 1, and (x, y) = H(u, v) solves the system

X==x-y, y=x-Y,

which corresponds to a stable focus.

Of course, the function H above is not differentiable at 0. (It is continuous there,
if we add H(0,0) = (0,0) to the definition.) If we require that H and its inverse be
differentiable, such behaviour as seen in the example above becomes impossible.

Unfortunately, we cannot guarantee differentiability of H in general. But the
following result [3] helps:



12 Theorem. (Hartman) Under the assumptions of the Hartman—Grobman the-
orem, if additionally f is a C? function and the real parts of all the eigenvalues of
A have the same sign, then the homeomorphism H can in fact be chosen to be a
C! diffeomorphism.

And by that we mean that H is C 1 and so is its inverse.

As a consequence of this, so long as the vector field f is C?, any equilibrium whose
linearization is a node or focus is itself of the same type.

No matter how differentiable f may be, we cannot conclude any higher degree
of differentiability for H. And when eigenvalues exist in both the left and right
halfplanes, a homeomorphism is all we can hope for. All this makes the Hartman-—
Grobman theorem quite a bit less useful than it looks at first sight.



Chapter 4

Linear systems of ODEs
with variable coefficients

Let A be a matrix valued function defined on some interval, with each A(¢#) being
an n x n matrix. A is supposed to be a Lipschitz continuous function of its argu-
ment.

This note is about the linear system

X=Ax+b(1) 4.1)

where x(?) is a (column) n-vector for each t, and b is a vector valued function of t,
assumed throughout to be continuous.

Consider the following ODE for a matrix valued function ®, where each ®(¢) is
also supposed to be an 7 x n matrix:

d=AD 4.2)

13 Proposition. Let ® be a matrix valued function satisfying (4.2). If ®(ty) is in-
vertible for some ty then ®(t) is in fact invertible for every t, and the inverse
W¥(1) = ®(r)~! satisfies the differential equation

¥Y=_wyA (4.3)

Proof: The differential equation for V¥ is easy to derive: Just differentiate the rela-
tion YO = [ to get

d . .
Ozﬁ(W®)=\P®+‘P®=‘P®+‘I’A®,

which when multiplied on the right by ¥ (and using ®¥ = I) yields (4.3).

The above proofrequires of course not only that @ is invertible for all ¢, but also
that the inverse is differentiable.

We can make the argument more rigourous by turning inside out, defining ¥
to be the solution of (4.3) satisfying the initial condition ¥ (y) = ®(#y) "'. Then we
differentiate:

d . .
a(‘l/(l)) =Y0+¥Y0=-VAD+VAD =0,

so that W@ = [ for all ¢, since itis so at t = . (]



14 Definition. A matrix valued solution of (4.2), which is invertible for all ¢, is
called a fundamental matrix for (4.1).

Clearly, there are many fundamental matrices, for if ® is one such and B is any
constant invertible matrix, then ®B is also a fundamental matrix.

However, a fundamental matrix is uniquely determined by its value at any given
ty, and if ®; and ®, are two fundamental matrices, we can set B = <I>1_1 (to) D2 (t0),
so that ®1B = ®, — at t = fp, and hence for all ¢.

We now show how the fundamental matrix solves the general initial-value prob-
lem for (4.1).

In fact, let x be any solution of (4.1). Let ® be a fundamental matrix, and write
x=®y.Then i = ®y+ ®y = ADy + @y, so that (4.1) becomes

ADy +®y=Ady+b.

Two terms cancel of course, and after multiplying both sides by ®~! on the left

what remains is
y=01p,

which is trivial to solve. Given the initial condition x(zy) = xp, that translates into
y(to) = ®(ty) "' xo, so the solution for y is

¢
y(1) = @(to) " xo +[ ®(s)"' b(s) ds.
fo
Multiplying by ®(¢) on the left we finally have the solution
¢
x(1) = DD (1) X+ D(1) | D(s)'b(s)ds.

To



Chapter 5

Sectors and Bendixson’s index formula

The picture below shows a phase portrait in the vicinity of an equilibrium point.

In this picture, the neighbourhood contains two elliptic sectors, recognizable by
orbits starting and ending at the equilibrium itself (and these orbits forming ever
smaller loops converging on the equilibrium point).

There are also two hyperbolic sectors, filled with orbits roughly resembling hy-
perbolas. The sectors are separated in one case, by separatrices, being orbits with
one end at the equilibrium separating the sectors.

Finally, there are two parabolic sectors, filled with orbits having just one end at
the equilibrium, and surrounded by other orbits of the same kind.

hyperbolic

elliptic

elliptic

hyperbolic

Bendixson's index formula states that the index of the equilibrium point is

e—h
1+

where e is the number of elliptic sectors and 4 is the number of hyperbolic sectors.



To see why this is true, recall the definition of the index: At any non-equilibrium
point, let ¢ be the angle made by the underlying vector field with the x axis. As
we traverse a small closed curve (small enough not to surround any other equi-
librium) going once around the equilibrium point in the positive direction, keep
track of ¢ as a continuously varying quantity. The index is the increase in ¢, di-
vided by 27. Written symbolically, it is A¢/(27).

Now let (r,60) be polar coordinates centered at the equilibrium point (move the
equilibrium to the origin if you prefer). Write ¢ = 6 + v, where ¥ must then be the
angle between the line from the equilibrium to the current point and the vector

field at that point (see the figure).
4
%(Ye

A

Since 6 by definition increases by 2 as we go around a curve of the prescribed
sort, symmbolically A8 = 27, it follows that the index must be 1+ Ay/(2m).

Now it only remains to notice that v increases by 7 across an elliptic sector, ¥
decreases by 7 across a hyperbolic sector, and it does not change at all across a
parabolic sector.

Add these changes to v over all sectors, with the result Ay = (e — h)m, and
Bendixson’s formula is the result.

The above argument is exact if the separatrices are straight lines. In practice
they need not be, but if we move in sufficiently close to the equilibrium, they can
be approximated by straight lines. Since the total increase in 1 must be an integer
times 27, any small errors in estimating the angles will not matter.

Notice finally that e and /# must both be odd numbers, or else they must both
be even. To see this more directly, note that any separatrix or parabolic sector has a
definite direction: Either towards the equilibrium point or away from it. And oppo-
site sides of an elliptic or hyperbolic sectors have opposite directions. Thus there
must be in total an even number of these sectors.



Chapter 6

The Poincaré-Bendixson theorem

The Poincaré-Bendixson theorem is often misstated in the literature. The purpose
of this note is to try to set the record straight, and to provide the outline of a proof.
Throughout this note we are considering an autonomous dynamical system on
the form
i=f), x(H)eQcRk?

where f: Q — R? is a locally Lipschitz continuous vector field on the open set Q.

Furthermore, we are considering a solution x whose forward half orbit O, =
{x(#): t= 0} is contained in a compact set K < Q.

An omega point of O, is a point z so that one can find ¢, — +oo with x(t) — z.
It is a consequence of the compactness of K that omega points exist. Write w for
the set of all omega points of O,.

It should be clear that w is a closed subset of K, and therefore compact. Also,
as a consequence of the continuous dependence of initial data and the general
nature of solutions of autonomous systems, w is an invariant set (both forward
and backward) of the dynamical system.

We can now state our version of the main theorem.

15 Theorem. (Poincaré-Bendixson) Under the above assumptions, if w does not
contain any equilibrium points, then w is a cycle. Furthermore, either the given
solution x traverses the cycle w, or it approaches w as t — +oo.

What happens if w does contain an equilibrium point?

The simplest case is the case w = {xp} for an equilibrium point xo. Then it is
not hard to show that x(f) — xy as t — +oo. (If not, there is some £ > 0 so that
|x(#)—xo| = € for arbitrarily large ¢, but then compactness guarantees the existence
of another omega pointin {z€ K: |z— xo| = ¢}.)

I said in the introduction that the Poincaré-Bendixson theorem is often mis-
stated. The problem is that the above two possibilities are claimed to be the only
possibilities. But a third possibility exists: w can consist of one or more equilibrium
points joined by solution paths starting and ending at these equilibrium points
(i.e., heteroclinic or homoclinic orbits).



16 Example. Consider the dynamical system

= 6H+uH0H
- dy 0x _1.2_ 1.2, 1.4
) 0H+ HaH , Hx,y)=5y"—5x"+3x".
y= 0x H oy

Notice that if we set the parameter p to zero, this is a Hamiltonian system. Of par-
ticular interest is the set given by H = 0, which consists of the equilibrium point
at zero and two homoclinic paths starting and ending at this equilibrium, roughly
forming an oo sign.

In general, an easy calculation gives

="
© ox Oyy_u

(5 (5]

—_— + —_—

0x oy

so that H will tend towards 0 if y < 0. In particular, any orbit starting outside
the “oo sign” will approach it from the outside, and the “co sign” itself will be the
omega set of this orbit.

Figure 6.1 shows a phase portrait for u = —0.02.

e < <

Figure 6.1: An orbit and its omega set.



We now turn to the proof of theorem 15.

By a transverse line segment we mean a closed line segment contained in Q,
so that f is not parallel to the line segment at any point of the segment. Thus the
vector field points consistently to one side of the segment.

Clearly, any non-equilibrium point of Q is in the interior of some transverse line
segment.

17 Lemma. If an orbit crosses a transverse line segment L in at least two differ-
ent points, the orbit is not closed. Furthermore, if it crosses L several times, the
crossing points are ordered along L in the same way as on the orbit itself.

Figure 6.2: Crossings of a transverse line segment

Proof: Figure 6.2 shows a transverse line segment L and an orbit that crosses L,
first at A, then at B. Note that the boundary of the shaded area consists of part of
the orbit, which is of course not crossed by any other orbit, and a piece of the L, at
which the flow enters the shaded region. (If B were to the other side of A, we would
need to consider the outside, not the inside, of the curve.) In particular, there is no
way the given orbit can ever return to A. Thus the orbit is not closed.

It cannot return to any other point on L between A and B either, so if it ever
crosses L again, it will have to be further along in the same direction on L, as in



the point C indicated in the figure. (Hopefully, this clarifies the somewhat vague
statement at the end of the lemma.) 1

18 Corollary. A point on some orbit is an omega point of that orbit if, and only if,
the orbit is closed.

Proof: The “if” part is obvious. For the “only if” part, assume that A is a point
that is also an omega point of the orbit through A. If A is an equilibrium point,
we have a special case of a closed orbit, and nothing more to prove. Otherwise,
draw a transverse line L through A. Since A is also an omega point, some future
point on the orbit through A will pass sufficiently close to A that it must cross L at
some point B. If the orbit is not closed then A # B, but then any future point on
the orbit is barred from entering a neighbourhood of A (consult Figure 6.2 again),
which therefore cannot be an omega point after all. This contradiction concludes
the proof. '

Outline of the proof of Theorem 15 Fix some xy € w, and a transverse line seg-
ment [ with xp in its interior.

If xp happens to lie on O, the corollary above shows that the orbit through x
must be closed, so w in fact equals that orbit.

If xy does not lie on O, then O, is not closed. However, I claim that the orbit
through x is still closed. In fact, let zp be an omega point of the orbit through xy,
and draw a transverse line L through zy. If the orbit through xy is not closed, it
must pass close enough to zj that it must cross L, infinitely often in a sequence
that approaches z; from one side. In particular, it crosses at least twice, say, first at
A and then again at B (again, refer to Figure 6.2).

But B is an omega point of O, so O.. crosses L arbitrarily close to B, and so O,
enters the shaded area in the figure. But then it can never again get close to A. This
is a contradiction, since A is also an omega point of O...

We have shown that xj lies on a closed path. This closed path must be all of w.
The solution x gets closer and closer to w, since it crosses a transverse line segment
through xj in a sequence of points approaching xy, and the theorem on continu-
ous dependence on initial data does the rest. '
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